Math, asked by nayanmazumder556, 3 months ago

3. Prove that the points (4,3), (7,-1) and (93)
are the veretices of an isosceles triangle.​

Answers

Answered by 1234565956
0

Answer:

now,the points would be the vertices of a right angled triangle.. if ..any one side is equal to the root of sum of other two sides...

\underline{\large\mathcal\red{!! solution!!}

\begin{gathered}ab = \sqrt{(7 - 3) {}^{2} + (9 + 7) {}^{2} } = \sqrt{4 {}^{2} + 16 {}^{2} } = 4 \sqrt{17} \\ \\ bc = \sqrt{(3 + 3) {}^{2} + ( - 7 - 3) {}^{2} } = \sqrt{6 {}^{2} + 10 {}^{2}} = 2 \sqrt{34} \\ \\ ca = \sqrt{( - 3 - 7) {}^{2} + (3 - 9) {}^{2} } = \sqrt{10 {}^{2} + 6 {}^{2} } = 2 \sqrt{34} \\ \\ \end{gathered}

ab=

(7−3)

2

+(9+7)

2

=

4

2

+16

2

=4

17

bc=

(3+3)

2

+(−7−3)

2

=

6

2

+10

2

=2

34

ca=

(−3−7)

2

+(3−9)

2

=

10

2

+6

2

=2

34

Now ,from Pythagorean theorem....for a right angled triangle...

\begin{gathered}bc {}^{2} + ca {}^{2} = (2 \sqrt{34} ) {}^{2} + (2 \sqrt{34} ) {}^{2} = 272 \\ = (4 \sqrt{17} ) {}^{2} = ab {}^{2} \end{gathered}

bc

2

+ca

2

=(2

34

)

2

+(2

34

)

2

=272

=(4

17

)

2

=ab

2

Similar questions