Math, asked by kreetsar, 1 year ago

3) Prove the following:
1- cos 2A /1+cos 2A = tan^2A​

Answers

Answered by Anonymous
0

SOLUTION:-

Given:

1-cos²A/1+cos2A = tan²A

Proof:

cos²A = 2cos²A -1

Take L.H.S

 =  >  \frac{1 - (2 {cos}^{2} A - 1)}{1 + (2 {cos}^{2} A - 1) }  \\  \\  =  >  \frac{1 - 2cos {}^{2} A + 1 }{1 +2 {cos}^{2} A - 1 }  \\  \\  =  >  \frac{2 - 2 {cos}^{2} A}{2 {cos}^{2} A }  \\  \\  =  > \frac{2(1 -  {cos}^{2} A)}{2 {cos}^{2} A}  \\ [{sin}^{2} A +  {cos}^{2} A = 1] \\  =  > 1 -  {cos}^{2} A =  {sin}^{2} A \\  \\  =  >  \frac{ {sin}^{2} A}{ {cos}^{2} A }  \\  \\  =  >  {tan}^{2} A \:  \:  \:  \:  \:  \:  \:  \:  \:  \: [R.H.S]

Hence,

Proved.

Hope it helps ☺️

Answered by brainly7944
2

\huge{\textbf{Solution is attached here.}}

Attachments:
Similar questions