Math, asked by racheal17, 1 year ago

3) Rationalize the denominator:
 \frac{3}{12 \sqrt{6} \times - 3 \sqrt{2}  }

Answers

Answered by mysticd
2

Answer:

 \frac{3}{12 \sqrt{6}  - 3 \sqrt{2} } =\frac{4\sqrt{6}+\sqrt{2}}{94}

Step-by-step explanation:

 \frac{3}{12 \sqrt{6}  - 3 \sqrt{2} }

=\frac{3}{3(4 \sqrt{6}  -  \sqrt{2}) }

=\frac{1}{(4 \sqrt{6} -  \sqrt{2} )}

=\frac{4\sqrt{6}+\sqrt{2}}{(4 \sqrt{6} - \sqrt{2})(4\sqrt{6}+\sqrt{2}) }

=\frac{4\sqrt{6}+\sqrt{2}}{(4 \sqrt{6})^{2} - (\sqrt{2})^{2})}

=\frac{4\sqrt{6}+\sqrt{2}}{96-2}

=\frac{4\sqrt{6}+\sqrt{2}}{94}

Therefore,

 \frac{3}{12 \sqrt{6}  - 3 \sqrt{2} } =\frac{4\sqrt{6}+\sqrt{2}}{94}

•••♪

Answered by Anonymous
0

\huge\sf{Answer:-}

= 3/12 √6 - √2

= 3/3 (4 √6 - √2)

= 1/(4 √6 - √2)

= 4 √6 + √2 / (4√6 - √2)(4√6 + √2)

= 4 √6 + √2 / (4√6)² - ( √2)²

= 4 √6 + √2 / 96 - 2

= 4 √6 + √2 / 94

So,

= 3 / 12√ - 3 √2

= 4 √6 + √2 / 94

Therefore [.•.] Proved!


mysticd: there two mistakes 4√6, 12√6 , you typed without 6, please check and edit
Similar questions