Math, asked by shriharikurva4941, 10 months ago

3-root 5/(3+2 root 5) = a root 5 - b what are values of a and b

Answers

Answered by atahrv
8

Answer:

\huge\boxed{\bigstar\:\:\:a=(-3)\:and\:b=(-1)\:\:\:\bigstar}

Step-by-step explanation:

Given:-

  • \frac{3-\sqrt{5} }{3+2\sqrt{5} }=a\sqrt{5} -b

To Find:-

   The Values of a and b.

Solution:-

Solving RHS:-

\implies\frac{(3-\sqrt{5})(3-2\sqrt{5}) }{(3+2\sqrt{5})(3-2\sqrt{5}) }

\implies\frac{9-10+6\sqrt{5}-3\sqrt{5}  }{(3)^2-(2\sqrt{5})^2 }

\implies\frac{3\sqrt{5}-1  }{9-10 }

\implies\frac{-(1-3\sqrt{5})  }{-(1) }

\implies 1-3\sqrt{5}

Now we know that,

\implies\frac{3-\sqrt{5} }{3+2\sqrt{5} }=a\sqrt{5} -b

\implies 1-3\sqrt{5} =a\sqrt{5} -b

By Substituting the Values of a and b, we get

-3\sqrt{5} =a\sqrt{5}

\large\boxed{a=(-3)}

-b=1

\large\boxed{b=(-1)}

Answered by birbo
1

✉️

-probably you

b= -1

a= -3

Similar questions