Math, asked by uttamkumar8877, 1 year ago

3 root 7 + 7 root 63 + root 7 upon 7

Answers

Answered by hirak143
28

Answer:

 \frac{169 \sqrt{7} }{7}

Step-by-step explanation:

3

3 \sqrt{7}  + 7 \sqrt{63}  +  \frac{ \sqrt{7} }{7}   \\  = 3 \sqrt{7}  + 21 \sqrt{7}  +  \frac{ \sqrt{7} }{7}  \\  =  \frac{21 \sqrt{7 } + 147 \sqrt{7} +  \sqrt{7}   }{7}  \\   =  \frac{169 \sqrt{7} }{7}

Answered by jitumahi435
1

We need to recall the following rules to solve the equation.

  • \sqrt{a^{2}*b }=a\sqrt{b}
  • a\sqrt{b} +c\sqrt{b} =(a+c)\sqrt{b}
  • \frac{\sqrt{a} }{a}=\frac{1}{\sqrt{a} }
  • \sqrt{a}\sqrt{a}=a

This problem is about simplifying the square root.

Given:

3\sqrt{7} + 7\sqrt{63}  + \frac{\sqrt{7} }{7}

=3\sqrt{7} + 7\sqrt{9*7}  + \frac{1}{\sqrt{7} }

=3\sqrt{7} + 7*3\sqrt{7}  + \frac{1}{\sqrt{7} }

=3\sqrt{7} + 21\sqrt{7}  + \frac{1}{\sqrt{7} }

=24\sqrt{7}  + \frac{1}{\sqrt{7} }

=\frac{(24\sqrt{7}*\sqrt{7})+1}{\sqrt{7}}

=\frac{168+1}{\sqrt{7}}

=\frac{169}{\sqrt{7}}

Similar questions