Math, asked by Ericka6191, 1 year ago

3 root 7 by root 5+ root 2 - 5 root 5 by root 2 + root 7 + 2 root 2 by root 7 + root 7

Answers

Answered by Jstationat3am666
2

Answer:

Let's simplify \sqrt{75}  

75

​  square root of, 75, end square root by removing all perfect squares from inside the square root.

We start by factoring 757575, looking for a perfect square:

75=5\times5\times3=\blueD{5^2}\times375=5×5×3=5  

2

×375, equals, 5, times, 5, times, 3, equals, start color blueD, 5, start superscript, 2, end superscript, end color blueD, times, 3.

We found one! This allows us to simplify the radical:

\begin{aligned} \sqrt{75}&=\sqrt{\blueD{5^2}\cdot3} \\\\ &=\sqrt{\blueD{5^2}} \cdot \sqrt{{3}} \\\\ &=5\cdot \sqrt{3} \end{aligned}  

75

​  

​    

=  

5  

2

⋅3

​  

=  

5  

2

 

​  ⋅  

3

​  

=5⋅  

3

​  

​  

So \sqrt{75}=5\sqrt{3}  

75

​  =5  

3

​  square root of, 75, end square root, equals, 5, square root of, 3, end square root.

Step-by-step explanation:

Similar questions