Math, asked by amitvaish081, 10 months ago

3 + root 7 upon 3 minus root 7 minus 3 minus root 7 upon 3 + root 7​

Answers

Answered by avinash0303
0

Step-by-step explanation:

plz like this Answer

Answer:

\frac{7+3\sqrt{5}}{3+\sqrt{5}}-\frac{7-3\sqrt{5}}{3-\sqrt{5}}=\sqrt{5}

3+

5

7+3

5

3−

5

7−3

5

=

5

Step-by-step explanation:

Given: \frac{7+3\sqrt{5}}{3+\sqrt{5}}-\frac{7-3\sqrt{5}}{3-\sqrt{5}}

3+

5

7+3

5

3−

5

7−3

5

We need to simplify the Given Expression.

We use rationalization of denominator to simply the given expression.

\frac{7+3\sqrt{5}}{3+\sqrt{5}}-\frac{7-3\sqrt{5}}{3-\sqrt{5}}

3+

5

7+3

5

3−

5

7−3

5

=\frac{7+3\sqrt{5}}{3+\sqrt{5}}\times\frac{3-\sqrt{5}}{3-\sqrt{5}}-\frac{7-3\sqrt{5}}{3-\sqrt{5}}\times\frac{3+\sqrt{5}}{3+\sqrt{5}}=

3+

5

7+3

5

×

3−

5

3−

5

3−

5

7−3

5

×

3+

5

3+

5

=\frac{(7+3\sqrt{5})(3-\sqrt{5})}{(3+\sqrt{5})(3-\sqrt{5})}-\frac{(7-3\sqrt{5})(3+\sqrt{5})}{(3-\sqrt{5})(3+\sqrt{5})}=

(3+

5

)(3−

5

)

(7+3

5

)(3−

5

)

(3−

5

)(3+

5

)

(7−3

5

)(3+

5

)

=\frac{21+9\sqrt{5}-7\sqrt{5}-3(5)}{(3)^2-(\sqrt{5})^2}-\frac{21+7\sqrt{5}-9\sqrt{5}-3(5)}{(3)^2-(\sqrt{5})^2}=

(3)

2

−(

5

)

2

21+9

5

−7

5

−3(5)

(3)

2

−(

5

)

2

21+7

5

−9

5

−3(5)

=\frac{6+2\sqrt{5}}{9-5}-\frac{6-2\sqrt{5}}{9-5}=

9−5

6+2

5

9−5

6−2

5

=\frac{6+2\sqrt{5}-(6-2\sqrt{5})}{4}=

4

6+2

5

−(6−2

5

)

=\frac{6+2\sqrt{5}-6+2\sqrt{5}}{4}=

4

6+2

5

−6+2

5

=\frac{4\sqrt{5}}{4}=

4

4

5

=\sqrt{5}=

5

Therefore, \frac{7+3\sqrt{5}}{3+\sqrt{5}}-\frac{7-3\sqrt{5}}{3-\sqrt{5}}=\sqrt{5}

3+

5

7+3

5

3−

5

7−3

5

=

5

Answered by NewBornTigerYT
0

Answer:

\huge\purple{\underbrace{\overbrace{\ulcorner{\mid{\overline{\underline{Answer\:=5}}}}}}}

Similar questions