Math, asked by swarshinde, 9 months ago

[3+root2][2-root3][3-root2][2+root3]

help me solve his...

Answers

Answered by itzankit21
0

Answer:

Heya there !!!

Here is the answer you were looking for:

\begin{lgathered}\frac{3 \sqrt{2} - 2 \sqrt{3} }{3 \sqrt{2} + 2 \sqrt{3} } + \frac{ \sqrt{12} }{ \sqrt{3} - \sqrt{2} } \\ \\ = \frac{3 \sqrt{2} - 2 \sqrt{3} }{3 \sqrt{2} + 2 \sqrt{3} } - \frac{ \sqrt{2 \times 2 \times 3} }{ \sqrt{3} - \sqrt{2} } \\ \\ = \frac{3 \sqrt{2} - 2 \sqrt{3} }{3 \sqrt{2} + 2 \sqrt{3} } - \frac{2 \sqrt{3} }{ \sqrt{3} - \sqrt{2} } \\\end{lgathered}

3

2

+2

3

3

2

−2

3

+

3

2

12

=

3

2

+2

3

3

2

−2

3

3

2

2×2×3

=

3

2

+2

3

3

2

−2

3

3

2

2

3

On rationalizing the denominators we get,

\begin{lgathered}= \frac{3 \sqrt{2} - 2 \sqrt{3} }{3 \sqrt{2} + 2 \sqrt{3} } \times \frac{3 \sqrt{2} - 2 \sqrt{3} }{3 \sqrt{2} - 2 \sqrt{3} } - \frac{2 \sqrt{3} }{ \sqrt{3} - \sqrt{2} } \times \frac{ \sqrt{3} + \sqrt{2} }{ \sqrt{3} + \sqrt{2} } \\ \\ = \frac{ {(3 \sqrt{2} )}^{2} + {(2 \sqrt{3} )}^{2} + 2(3 \sqrt{2} )(2 \sqrt{3}) }{ {(3 \sqrt{2}) }^{2} - {(2 \sqrt{3}) }^{2} } - \frac{2 \sqrt{3}( \sqrt{3} + \sqrt{2} ) }{ {( \sqrt{3} )}^{2} - {( \sqrt{2} )}^{2} } \\ \\ = \frac{18 + 12 + 12 \sqrt{6} }{18 - 12} - \frac{6 - 2 \sqrt{6} }{3 - 2} \\ \\ = \frac{30 + 12 \sqrt{6} }{6} - 6 + 2 \sqrt{6} \\ \\ = 5 +2 \sqrt{6} - 6 + 2 \sqrt{6} \\ \\ = - 1 + 4 \sqrt{6} \\ \\ = 4 \sqrt{6} - 1\end{lgathered}

=

3

2

+2

3

3

2

−2

3

×

3

2

−2

3

3

2

−2

3

3

2

2

3

×

3

+

2

3

+

2

=

(3

2

)

2

−(2

3

)

2

(3

2

)

2

+(2

3

)

2

+2(3

2

)(2

3

)

(

3

)

2

−(

2

)

2

2

3

(

3

+

2

)

=

18−12

18+12+12

6

3−2

6−2

6

=

6

30+12

6

−6+2

6

=5+2

6

−6+2

6

=−1+4

6

=4

6

−1

Answered by rohitsau
4

Answer:

(3 +  \sqrt{2} )(3 -  \sqrt{2} )(2 -  \sqrt{3} )(2 +  \sqrt{3} ) \\  = ( {3}^{2}  -  { \sqrt{2} }^{2} )( {2}^{2}  -  { \sqrt{3} }^{2} ) \\  = (9 - 2)(4 - 3) \\  = 7 \times 1 \\ 7

hence answer is 7

Similar questions