Math, asked by ap241249oyl58p, 1 year ago

3+root2/3-root2=a+b root2..

Answers

Answered by DaAnonymous
16
Hey friend,
Here is the answer you were looking for:
 \frac{3 +  \sqrt{2} }{3 -  \sqrt{2} }  = a + b \sqrt{2}  \\  \\  on \: rationalizing \: the \: denominator \: we \: get \\  \\  =  \frac{3 +  \sqrt{2} }{3 -  \sqrt{2} }  \times  \frac{3 +  \sqrt{2} }{3 +  \sqrt{2} }  \\  \\ using \: the \: identity \\ {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab \\ (a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \\  \\  =  \frac{ {(3)}^{2} +  {( \sqrt{2} )}^{2}  + 2 \times 3 \times  \sqrt{2}  }{ {(3)}^{2} -  {( \sqrt{2}) }^{2}  }  \\  \\  =  \frac{9 + 2 + 6 \sqrt{2} }{9 - 2}  \\  \\   \frac{11 + 6 \sqrt{2} }{7}  = a + b \sqrt{2}  \\  \\ a =  \frac{11}{7}  \\  \\ b =  \frac{6}{7}


Hope this helps!!!!

Thanks...
☺☺
Answered by abhi569
14
 \frac{3 +  \sqrt{2} }{3 -  \sqrt{2} }  = a+ b \sqrt{2}


                    By Rationalization,


 \frac{3 +  \sqrt{2 } }{3 -  \sqrt{2} }  ×  \frac{3 +  \sqrt{2} }{3 +   \sqrt{2} }

 \frac{(3 +  \sqrt{2})^2  }{(3)^2 - ( \sqrt{2})^2 }

 \frac{ 9 + 2 + 6 \sqrt{2} }{9 - 2 }  = a +b \sqrt{2}

 \frac{11 + 6 \sqrt{2} }{7} = a + b \sqrt{2}


a =  \frac{11}{7}

b = 
 \frac{6}{7}




i hope this will help you



-by ABHAY




DaAnonymous: nice explained sir
abhi569: Thanks but I think u explained nice..... Good
abhi569: (-:
DaAnonymous: thank you so much... it's a pleasure getting this compliment from you sir
abhi569: (-:
Similar questions