3 से गुणा करने पर 100 आता है तो 200 के बीच की प्राकृतिक संख्याओं का योग हल सहित
Answers
Answered by
0
Answer:
The required sum = 4950
Step-by-step explanation:
The required digits obtained are :
102, 105, 108, 111,...........,198
We need to find the sum of this sequence.
First term, a = 102
Common Difference, d = 3
\begin{lgathered}\text{Last term, }a_n=198\\\\\text{To find the number of terms}\\\\a_n=a+(n-1)d\\\\\implies 198=102+(n-1)3\\\\\implies 96=(n-1)3\\\\\implies n-1=32\\\\\implies n = 33\\\\Now, S_n=\frac{n}{2}(a+a_n)\\\\\implies S_n=\frac{33}{2}\times (102+198)\\\\\implies S_n=\frac{33}{2}\times 300\\\\\implies S_n=4950\end{lgathered}Last term, an=198To find the number of termsan=a+(n−1)d⟹198=102+(n−1)3⟹96=(n−1)3⟹n−1=32⟹n=33Now,Sn=2n(a+an)⟹Sn=233×(102+198)⟹Sn=233×300⟹Sn=4950
The required sum = 4950
Step-by-step explanation:
The required digits obtained are :
102, 105, 108, 111,...........,198
We need to find the sum of this sequence.
First term, a = 102
Common Difference, d = 3
\begin{lgathered}\text{Last term, }a_n=198\\\\\text{To find the number of terms}\\\\a_n=a+(n-1)d\\\\\implies 198=102+(n-1)3\\\\\implies 96=(n-1)3\\\\\implies n-1=32\\\\\implies n = 33\\\\Now, S_n=\frac{n}{2}(a+a_n)\\\\\implies S_n=\frac{33}{2}\times (102+198)\\\\\implies S_n=\frac{33}{2}\times 300\\\\\implies S_n=4950\end{lgathered}Last term, an=198To find the number of termsan=a+(n−1)d⟹198=102+(n−1)3⟹96=(n−1)3⟹n−1=32⟹n=33Now,Sn=2n(a+an)⟹Sn=233×(102+198)⟹Sn=233×300⟹Sn=4950
Similar questions