Math, asked by Sanjaykumarroy, 1 year ago

3. समान्तर श्रेणी ज्ञात कीजिए जिसका 5वाँ पद 15 तथा तीसरे और
आठवे पदों का योग 34 है।
उत्तर:​

Answers

Answered by ihrishi
2

Step-by-step explanation:

Given:

t_5=15  \:  \& \:  t_3 + t_8 = 34 \\  \\  \therefore \: a + (5 - 1)d = 15 \\  \\   \therefore \: a + 4d = 15  \\  \\ a = 15 - 4d.....(1)\\ \\   \because \: t_3 + t_8 = 34  \\  \\   \therefore \: a + (3 - 1)d +  a + (8 - 1)d = 34\\  \\   \therefore \: a +2d +  a +7d = 34\\  \\   \therefore \: 2a +9d = 34....(2) \\  \\ from \: equations \: (1) \:  \& \: (2) \\  \\ 2(15 - 4d) + 9d = 34 \\  \\  \therefore \: 30 - 8d + 9d = 34 \\  \\ \therefore \: 30  + d = 34 \\  \\  \therefore \: d = 34  - 30\\  \\  \huge \red{ \boxed{\therefore \: d = 4}}\\  \\   \\  \implies \: a = 15 - 4  \times 4 = 15 - 16 =  - 1 \\  \\ \implies \:  \huge \blue{ \boxed {a =  - 1}} \\

Therefore, required AP is: - 1, 3, 7, 11,.......

Similar questions