Math, asked by sanatsupratims, 2 months ago

(3 senx + 4 cosec x)? d​

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \int(3 \sin(x)  + 4 \cosec(x))^{2} dx \\

 =  \int \{9 \sin^{2} (x)  + 16 \cosec^{2} (x) + 24 \} dx \\

 =  \int 9 \sin^{2} (x)dx  + \int 16 \cosec^{2} (x) dx+  \int24  dx \\

 =  9\int \sin^{2} (x)dx  +16 \int  \cosec^{2} (x) dx+ 24 \int  dx \\

 =  9\int  \frac{1 -  \cos(2x) }{2} dx   - 16   \cot (x) + 24 x  +C\\

 =   \frac{9}{2} \int   \{1 -  \cos(2x)  \} dx   - 16   \cot (x) + 24 x  +C\\

 =   \frac{9}{2} \int  dx -  \frac{9}{2}   \int\cos(2x)  dx   - 16   \cot (x) + 24 x  +C\\

 =   \frac{9x}{2} -  \frac{9}{4}   \sin(2x)   - 16   \cot (x) + 24 x  +C\\

 =   \frac{9x}{2} + 24x -  \frac{9}{4}   \sin(2x)   - 16   \cot (x)   +C\\

 =   \frac{57x}{2} -  \frac{9}{4}   \sin(2x)   - 16   \cot (x)   +C\\

Similar questions