Math, asked by praaptipals1711, 8 months ago

3. Show that an orthogonal matrix is always invertible and find det (A).​

Answers

Answered by MaheswariS
2

\underline{\textsf{To prove:}}

\textsf{An orthogonal matrix is always invertible}

\underline{\textsf{Solution:}}

\underline{\textsf{Orthogonal matrix:}}

\textsf{A square matrix of order is said to be orthogonal if}

\mathsf{A\,A^T=A^T\,A=I}

\textsf{where I is the identity of order n}

\textsf{Let A be an orthogonal matrix}

\textsf{Then,}

\mathsf{AA^T=A^TA=I}

\textsf{Consider,}

\mathsf{AA^T=I}

\implies\mathsf{det(AA^T)=det(I)}

\text{Using,}

\boxed{\mathsf{det(AB)=det(A)\,det(B)}}

\implies\mathsf{det(A)\,det(A^T)=det(I)}

\text{Using,}

\boxed{\mathsf{det(A^T)=det(A)}}

\boxed{\textsf{Determinant of identity matrix is always 1}}

\implies\mathsf{det(A)\,det(A)=1}

\implies\mathsf{[det(A)]^2=1}

\textsf{Taking square root, we get}

\implies\mathsf{det(A)=\pm\,1}

\textsf{Since}\;\mathsf{det(A){\neq}0},\;A^{-1}\;\textsf{exists}

\textsf{Hence A is invertible}

\underline{\textsf{Answer:}}

\mathsf{det(A)=\pm\,1}

Similar questions