Math, asked by sravanp, 5 months ago

3.
Show that (sin theeta +cos theeta)^2 – (sin theeta -cos theeta )^2 = 2 sin 20.​

Answers

Answered by Anonymous
68

 \large \underline \bold{Solution}:-

\sf{L.H.S}:-

\sf{(SinO + CosO)^{2} - (SinO - CosO)^{2}}

 \large \underline \bold{Usable \: Identity}:-

\: \: \: \: \: \large\boxed{\sf\red{(a + b)^{2} - (a - b)^{2} = 4ab}}

\sf{On \: Comparing \: the \: above \: eq. \: to \: this \: Identity :-}

\sf{here \: ,}

\: \: \: \: \sf{a = SinO}

\: \: \: \: \sf{b = CosO}

\sf{So \: ,}

\: \: \: \: \: \sf{=> 4SinO CosO}

\: \: \: \: \: \sf{=> 2(2 SinO CosO)}

\sf{We \: know \: that}:-

\: \: \: \: \: \sf{2 SinO CosO = Sin 2O}

\sf{So \: ,}

\: \: \: \: \:  \small \bold{=> 2 Sin 2O}

\: \: \: \: \:  \small \bold{=> R.H.S}

 \large \underline \bold{HENCE \: PROOF \: !!}

 \large \underline \bold{Extra \: Identity \: proof}:-

\: \: \: \: \: \: \:  \small \bold{Sin 2O}

\: \: \: \: \sf{Sin (O + O)}

\: \: \sf{SinO CosO + CosO SinO}

\: \: \sf{SinO CosO + SinO CosO}

\: \: \: \: \:  \small \bold{2SinO CosO}

Answered by OfficialPk
77

 \: \: \boxed{\boxed{\sf{\mapsto \: Let \: us \: know \: formulas}}}

\large\mathsf\purple{{(a+b)}^{2}-{(a-b)}^{2} \: = \: 4ab} \mathrm\red{--------> 1}

\large\mathsf\purple{2(2sinθ.cosθ) \: = \: 2.sin2θ} \mathrm\red{--------> 2}

\mathsf\red{Given}

\mathsf{LHS \: = \: {(sinθ+cosθ)}^{2}-{(sinθ-cosθ)}^{2}}

\large\mathsf{RHS \: = \: 2sin2θ}

\mathsf\red{Solving \: by \: LHS \: :}

\mathsf{= \: {(sinθ+cosθ)}^{2}-{(sinθ-cosθ)}^{2}}

\mathsf\red{From \: the \: formula \: 1}

\mathsf{===> {(sinθ+cosθ)}^{2}-{(sinθ-cosθ)}^{2} \: = \: 4sinθcosθ}

\mathsf{= \: 2(2sinθcosθ)}

\mathsf\red{From \: the \: formula \: 2}

\mathsf{= \: 2.sin2θ}

 \: \: \boxed{\sf{LHS \: = \: RHS}}

Similar questions
Math, 2 months ago