Math, asked by kt2702787, 9 months ago

3. Show that the diagonals of a parallelogram divide
it into four triangles of equal area.

Answers

Answered by harshitvaswani
1

Answer:

Let ABCD be a parallelogram with diagonals AC and BD 

intersecting at O. Since the diagonals of a parallelogram bisect each other at the point of intersection.

Therefore, 

AO=OC and BO=OD

We know that the median of a triangle divides it into two equal parts.

Now,

In △ABC,

∵BO is median.

ar(△AOB)=ar(△BOC).....(1)

In △BCD,

∵CO is median.

ar(△BOC)=ar(△COD).....(2)

In △ACD,

∵DO is median.

ar(△AOD)=ar(△COD).....(3)

From equation (1),(2)&(3), we get

ar(△AOB)=ar(△BOC)=ar(△COD)=ar(△AOD)

Hence proved...

Answered by SCIENTIFIGENIOUS
1

Answer:

To prove:- ar(△AOB)=ar(△BOC)=ar(△COD)=ar(△AOD)

Proof:-

Let ABCD be a parallelogram with diagonals AC and BD

intersecting at O. Since the diagonals of a parallelogram bisect each other at the point of intersection.

Therefore,

AO=OC and BO=OD

We know that the median of a triangle divides it into two equal parts.

Now,

In △ABC,

∵BO is median.

ar(△AOB)=ar(△BOC).....(1)

In △BCD,

∵CO is median.

ar(△BOC)=ar(△COD).....(2)

In △ACD,

∵DO is median.

ar(△AOD)=ar(△COD).....(3)

From equation (1),(2)&(3), we get

ar(△AOB)=ar(△BOC)=ar(△COD)=ar(△AOD)

Hence proved.

Step-by-step explanation:

PLEASE--------

MARK AS BRAINLIST ANSWER ❤️❤️

PLZZ FOLLOW ME

Attachments:
Similar questions