Math, asked by 160467, 6 months ago

3. Simplify: :
4^3n+4^2n. 4^n+1/
(4 x 4^n) ^3- 4 x 4^3n

Answers

Answered by ZaraAntisera
1

Answer:

\mathrm{\frac{4^3n+4^2n\times \:4^n+1}{\left(4\times \:4^n\right)^3-4\times \:4^3n}=\frac{64n+4^{2+n}n+1}{64^{1+n}-256n}}

Step-by-step explanation:

\mathrm{\frac{4^3n+4^2n\times \:4^n+1}{\left(4\times \:4^n\right)^3-4\times \:4^3n}}

\mathrm{=\frac{64n+4^{n+2}n+1}{\left(4\times \:4^n\right)^3-4^3\times \:4n}}

=\mathrm{\frac{64n+4^{n+2}n+1}{\left(4^{n+1}\right)^3-256n}}

\mathrm{Apply\:exponent\:rule:\quad \left(a^b\right)^c=a^{bc}}

\mathrm{=\frac{64n+4^{n+2}n+1}{4^{3\left(n+1\right)}-256n}}

\mathrm{=\frac{64n+4^{n+2}n+1}{64^{n+1}-256n}}

Similar questions