Math, asked by deepikasinghparashar, 3 months ago


3. Simplify and express the answer with positive exponent. ​

Attachments:

Answers

Answered by Anonymous
28

Question :-

Simplify and express the answer with positive exponent -

\sf \Big[ \sqrt[3]{x^4 y} \times \dfrac{1}{\sqrt[3]{xy^7}}\Big]^{-4}

Solution :-

\implies\sf \Big[ \sqrt[3]{x^4 y} \times \dfrac{1}{\sqrt[3]{xy^7}}\Big]^{-4}

  • \sf \sqrt a = (a)^{\dfrac{1}{n}}

\implies\sf \Big[x^{4 \times \frac{1}{3}} \times y^{\frac{1}{3}} \times \dfrac{1}{x^\frac{1}{3} \times y^{7 \times \frac{1}{3}} }\Big]^{-4}

\implies\sf \Big[x^{\frac{4}{3}} \times y^{\frac{1}{3}} \times \dfrac{1}{x^\frac{1}{3} \times y^{\frac{7}{3}} }\Big]^{-4}

  • \sf \dfrac{1}{a^n} = a^{-n}

\implies\sf [x^{\frac{4}{3}} \times y^{\frac{1}{3}} \times x^{-\frac{1}{3}} \times y^{-\frac{7}{3}}]^{-4}

  • \sf a^m \times a^n = a^{m + n}

\implies\sf [x^{\frac{4}{3} + ( - \frac{1}{3})} \times  y^{\frac{1}{3} + ( - \frac{7}{3})}]^{-4}

\implies\sf [x^{\frac{4}{3}  - \frac{1}{3}} \times  y^{\frac{1}{3} - \frac{7}{3}}]^{-4}

\implies\sf [x^{\frac{4-1}{3}} \times y^\frac{1 - 7}{3}]^{-4}

\implies\sf [x^{\frac{3}{3}} \times y^{\frac{-6}{3}}]^{-4}

\implies\sf [x^1 \times y^{-2}]^{-4}

\implies\sf (x^1)^{-4} \times (y^{-2})^{-4}

  • \sf (a^m)^n = a^{mn}

\implies\sf x^{-4} \times y^{(-2) \times (-4)}

\implies\sf x^{-4} \times y^{8}

\implies\boxed{\sf \dfrac{y^8}{x^4}}

Similar questions