English, asked by peerusaheb11, 2 months ago

3(sin 0 - cos 0)4 + 6(sin e + cos 0)2 +4(sinº @ + coso e) = 13.​

Answers

Answered by sunekhushi60
0

Answer:

Consider

4 (sin

6

x+cos

6

x)

= 4[

(sin

2

x)

3

+

(cos

2

x)

3

]

=

4

[(sin

2

x+cos

2

x) (sin

4

x−sin

2

xcos

2

x+cos

4

x)]

=4[

(sin

2

x+cos

2

x)

2

−2sin

2

xcos

2

x−2sin

2

xcos

2

x]

=

4 [1−3sin

2

xcos

2

x]

= 4− 12sin

2

xcos

2

x

(1)

6

[sinx+cosx]

2

= 6[sin

2

x+cos

2

x+2sinxcosx]

= 6[1+2sinxcosx]

= 6+ 12sinxcosx

(2)

3

(sinx−cosx)

4

= 3

[

(sinx−cosx)

2

]

2

= 3

[sin

2

x+cos

2

x−2sinxcosx]

2

= 3

[1−2sinxcosx]

2

= 3[1−4sinxcosx+4sin

2

xcos

2

x]

= 3− 12sinxcosx+ 12sin

2

xcos

2

x

(3)

Adding (1),(2) and (3) we get

3

(sinx−cosx)

4

+

4 (sin

6

x+cos

6

x) +

6

[sinx+cosx]

2

= 3− 12sinxcosx+ 12sin

2

xcos

2

x+ 4− 12sin

2

xcos

2

x+ 6+ 12sinxcosx

=

13

Hence proved

Similar questions