Math, asked by mamathapuru, 1 year ago

3 sin 3A + 2 cos (5a + 10) (whole divided by )root 3 tan 3A - cosec (5A - 20):when a=10​

Answers

Answered by writetochinchu
16

Answer:

-5

Step-by-step explanation:

3 sin 30 + 2 cos 60

-----------------------------

√3 tan 30 - cosec 30

3 × 1/2 + 2 × 1/2

----------------------

√3 × 1/√3 - 2

3/2+1

--------

-2

Which on simplifying gives you -5

Answered by lublana
10

\frac{sin3a+2cos(5a+10)}{\sqrt 3tan3a-cosec(5a-20)}=-\frac{1}{2} when a=10

Step-by-step explanation:

\frac{sin3a+2cos(5a+10)}{\sqrt 3tan3a-cosec(5a-20)}

a=10

Substitute a=10

\frac{3sin30^{\circ}-2cos(50+10)}{\sqrt 3tan30^{\circ}-cosec(50-20)}

\frac{3\times \frac{1}{2}-2cos60}{\sqrt 3\times \frac{1}{\sqrt 3}-cosec 30}

By using the value tan30^{\circ}=\frac{1}{\sqrt 3}

sin 30^{\circ}=\frac{1}{2}

\frac{\frac{3}{2}-2\times \frac{1}{2}}{1-2}

By using the value cos60^{\circ}=\frac{1}{2}

cosec30^{\circ}=2

\frac{\frac{3}{2}-\frac{2}{2}}{-1}=-\frac{3-2}{2}

-\frac{1}{2}

#Learns more:

https://brainly.in/question/7771912

Similar questions