3(sin^4A+cos^4A) = 2(sin^6+cos^6)+1
Answers
Answered by
0
let 3(sin^4A+cos^4A) = 2(sin^6+cos^6)+1
⇒ 2 ( sin^6A + cos^6A ) - 3 ( sin^4A + cos^4A ) + 1 = 0
then,
2 ( sin^6A + cos^6A ) - 3 ( sin^4A + cos^4A ) + 1 = 0
2 ( sin²A + cos²A ) ( sin^4A - sin²A cos²A + cos^4A ) - 3 ( sin^4A + cos^4A ) + 1 = 0
2 ( 1 ) ( sin^4A - sin²A cos²A + cos^4A ) - 3 ( sin^4A + cos^4A ) + 1 = 0
2 sin^4A - 2 sin²A cos²A + 2 cos^4A - 3 sin^4A - 3 cos^4A + 1 = 0
– sin^4A - 2 sin ² A cos ² A - cos^4A + 1 = 0
– ( sin^4A + 2 sin ² A cos ² A + cos^4A ) + 1 = 0
– ( sin ² A + cos ² A ) ² + 1 = 0
– ( 1 ) ² + 1 = 0
– 1 + 1 = 0
0 = 0
:)Hope this ans would help...
⇒ 2 ( sin^6A + cos^6A ) - 3 ( sin^4A + cos^4A ) + 1 = 0
then,
2 ( sin^6A + cos^6A ) - 3 ( sin^4A + cos^4A ) + 1 = 0
2 ( sin²A + cos²A ) ( sin^4A - sin²A cos²A + cos^4A ) - 3 ( sin^4A + cos^4A ) + 1 = 0
2 ( 1 ) ( sin^4A - sin²A cos²A + cos^4A ) - 3 ( sin^4A + cos^4A ) + 1 = 0
2 sin^4A - 2 sin²A cos²A + 2 cos^4A - 3 sin^4A - 3 cos^4A + 1 = 0
– sin^4A - 2 sin ² A cos ² A - cos^4A + 1 = 0
– ( sin^4A + 2 sin ² A cos ² A + cos^4A ) + 1 = 0
– ( sin ² A + cos ² A ) ² + 1 = 0
– ( 1 ) ² + 1 = 0
– 1 + 1 = 0
0 = 0
:)Hope this ans would help...
Similar questions