Math, asked by sohelgora1270, 1 day ago

3 sin 6 degrees - 4cos cube 84 degrees

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given expression is

\rm \: 3sin6\degree  - 4 {cos}^{3}84\degree  \\

can be rewritten as

\rm \: =  \:  3sin6\degree  - 4 {cos}^{3}(90\degree  - 6\degree)  \\

We know,

\boxed{\sf{  \:cos(90\degree  - x) = sinx \: }} \\

So, using this identity, we get

\rm \:  =  \: 3sin6\degree  - 4 {sin}^{3}6\degree  \\

We know,

\boxed{\sf{  \:3sinx -  {4sin}^{3}x = sin3x \: }} \\

So, using this identity, we get

\rm \:  =  \: sin3(6\degree )

\rm \:  =  \: sin18\degree  \\

\rm \:  =  \: \dfrac{ \sqrt{5}  - 1}{4}  \\

Hence,

\rm\implies \:\boxed{\sf{  \:\rm \: 3sin6\degree  - 4 {cos}^{3}84\degree  =  \frac{ \sqrt{5}  - 1}{4} \: }}  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

Value of sin18°

 \: \rm \: x \:  =  \: 18\degree  \\

 \: \rm \: 5x \:  =  \: 90\degree  \\

 \: \rm \: 2x + 3x \:  =  \: 90\degree  \\

 \: \rm \: 2x \:  =  \: 90\degree  - 3x \\

 \: \rm \: sin2x \:  =  \:sin( 90\degree  - 3x) \\

\rm \: sin2x = cos3x \\

\rm \: 2sinxcosx =  {4cos}^{3}x - 3cosx \\

\rm \: 2sinx =  {4cos}^{2}x - 3 \\

\rm \: 2sinx =  {4(1 - sin}^{2}x) - 3 \\

\rm \: 2sinx =  {4 -4 sin}^{2}x - 3 \\

\rm \: 2sinx =  {1 -4 sin}^{2}x \\

\rm \:  {4sin}^{2}x + 2sinx - 1 = 0 \\

So, its a quadratic equation in sinx, so using Quadratic Formula, we get

\rm \: sinx = \dfrac{ - 2 \:  \pm \:  \sqrt{ {2}^{2}  - 4( - 1)(4)} }{2(4)}  \\

\rm \: sinx = \dfrac{ - 2 \:  \pm \:  \sqrt{ 4 + 16} }{2(4)}  \\

\rm \: sinx = \dfrac{ - 2 \:  \pm \:  \sqrt{ 20} }{2(4)}  \\

\rm \: sinx = \dfrac{ - 2 \:  \pm \:  \sqrt{ 2 \times 2 \times 5} }{2(4)}  \\

\rm \: sinx = \dfrac{ - 2 \:  \pm \: 2 \sqrt{5} }{2(4)}  \\

\rm \: sinx = \dfrac{ - 1 \:  \pm \:  \sqrt{5} }{4}  \\

\rm \: sinx = \dfrac{ - 1 +\sqrt{5} }{4}  \:  \: or \:\:\dfrac{ - 1 - \sqrt{5} }{4}  \:  \{rejected\:as\: x\: is \: acute \} \\

Hence,

\rm\implies \:\boxed{\sf{  \:\rm \: sin18\degree  = \dfrac{\sqrt{5}  - 1}{4}  \: }} \:  \:  \\

Answered by XxLUCYxX
5

Given,

3 \sin{6}^{o}  - 4 \cos3 {84}^{o}

We can write this expression as,

 \boxed{3 \sin {6}^{o}  - 4  { \cos}^{3}  {90}^{o}  -  {6}^{o} }

Using the identity,

 \underline{ \cos( {90}^{o}  - x) =  \sin \: x}

So, after using we get,

3 \sin  {6}^{o}  - 4  { \sin}^{3}  {6}^{o}

Another identity which we know,

 \underline{3 \sin x \:  - 4 { \sin}^{3} x =  \sin3x}

So, after using the identity we get,

 =  \:  \sin3( {6}^{o} )

 =  \:  \sin {18}^{o}

 \large =  \:  \frac{ \sqrt{5} - 1 }{4}

Therefore,

 \leadsto \:  \boxed{3 \sin {6}^{o}  - 4  { \cos}^{3}  {84}^{o}  =  \frac{ \sqrt{5} - 1 }{4} }

Similar questions