Math, asked by harshverma123mr, 5 months ago

3. sin (60° + 0) - cos (30° - 0) is equal to
(a) 2 cos 0 (b) 2 sin e (c) o
1​

Answers

Answered by REDPLANET
48

\underline{\boxed{\bold{Question}}}  

↠ sin(60° + θ) - cos(30° - θ) is equal to  ?

        ❏ 2 cosθ

        ❏ 2 sinθ

        ❏ 0

        ❏ 1

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\underline{\boxed{\bold{Important\;Information}}}  

↠ Complementary angle are angles whose sum is 90°

❏ Here are certain relation of trigonometric functions related to complement of their functions.

        ✧ sinθ = cos(90° - θ)

        ✧ cosθ = sin(90° - θ)

        ✧ tanθ = cot(90° - θ)

        ✧ cotθ = tan(90° - θ)

        ✧ secθ = cosec(90° - θ)

        ✧ cosecθ = sec(90° - θ)

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\underline{\boxed{\bold{Answer}}}

Let's Start !

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Let's solve by using formulas stated above !

:\implies  E = sin(60^{\circ} + \theta) - cos(30^{\circ} - \theta )

:\implies  E = sin(60^{\circ} + \theta) - sin(90^{\circ}-\{30^{\circ} - \theta\} )

:\implies  E = sin(60^{\circ} + \theta) - sin(90^{\circ} - 30^{\circ} + \theta )

:\implies  E = sin(60^{\circ} + \theta) - sin(60^{\circ} + \theta )

\boxed { \bold { \red{: \implies  E = 0 } } }

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\boxed{\boxed{\bold{\therefore sin(60^{\circ} + \theta) - cos(30^{\circ} - \theta ) = 0 }}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Hope this helps u.../

【Brainly Advisor】

Answered by vishuchauhan11
0

Answer:

(c) are right answer (c) are right answer

Similar questions