Math, asked by suklakundu78, 11 months ago

3 sin theta+4cos theta = 5,prove that sin theta=3/5​

Answers

Answered by rishu6845
31

Given ---->

3 \: sin \alpha  \:  +  \: 4 \: cos \alpha  \:  = 5

To prove ---->

sin \alpha  \:  =  \dfrac{3}{5}

Concept used---->

1)

\blue{{\large( \: a \:  -  \: b \: ) ^{2}  = \:  {a}^{2} \:  +  \: {b}^{2} \:  - 2 \: a \: b}}

2)

\green{{\large1 \:  -  \:  {sin}^{2} \alpha  \:  =  {cos}^{2} \alpha}}

Solution-----> ATQ,

3 \: sin \alpha  \:  +  \: 4 \: cos \alpha  \:  =  \: 5

=>4 \: cos \alpha  \:  =  \: 5 \:  -  \: 3 \: sin \alpha

squaring \: both \: sides \: we \: get

=>( \: 4 \: cos \alpha  \: ) ^{2} \:  = ( \: 5 \:  -  \: 3 \: sin \alpha  \: ) ^{2}

 =  > 16 \:  {cos}^{2} \alpha  \:  = ( \: 5 \: ) ^{2} \:  + ( \: 3 \: sin \alpha ) ^{2} \:  -  \: 2 \: ( \: 5 \: ) \: ( \: 3sin \alpha )

 =  > 16 \: ( \: 1 \:  -  {sin}^{2} \alpha  \: ) \:  = 25 \:  + 9 {sin}^{2} \alpha  \:  - 30 \: sin \alpha

 =  > 16 \:  -  \: 16 {sin}^{2} \alpha  \:  = 25 \:  + 9 {sin}^{2} \alpha  \:  - 30 \: sin \alpha

 =  > 25 \:  {sin}^{2} \alpha -   \: 30 \:sin \alpha  \:  + 9 \:  = 0

 =  >  \: ( \: 5 \: sin \alpha  \: ) ^{2} \:  - 2 \: ( \: 5 \: sin \alpha  \: ) \: ( \: 3 \: ) \:  +  \: ( \: 3 \: ) ^{2} \:  = 0

 =  >  \: ( \: 5 \: sin \alpha  \:  -  \: 3 \:)  ^{2} \:  =  \: 0

taking \: square \: root \: both \: sides \:

 =  >  \: 5 \: sin \alpha  \: -   \: 3 \:  = 0

 =  > 5 \: sin \alpha  \:  =  \: 3

 =  >  \: sin \alpha  \:  =  \:  \dfrac{3}{5}

Answered by aparesh1968
0

Answer:

3/5

Step-by-step explanation:

sin theta= 3/5 at first do the whole square and then make it a perfect square so that at the 2nd last line (5 sin theta-3)^2 = 0 come by which it become easier to solve .

Similar questions