3 sin theta + 5 cos theta = 4 find the value of 5 sin theta - 3 cos theta
Answers
Answered by
24
Let ... 3 sin x + 5 cos x = 5.
∴ ( 3 sin x + 5 cos x )² = 5²
∴ 9 sin² x + 25 cos² x + 30 sin x cos x = 25
∴ 9(1-cos² x) + 25(1-sin² x) + 30 sin x cos x = 25
∴ 9 - 9cos² x + 25 - 25sin² x + 30 sin x cos x = 25
∴ 9 = 25 sin² x + 9 cos² x - 30 sin x cos x
∴ 9 = ( 5 sin x - 3 cos x )²
∴ 5 sin x - 3 cos x = ± √9
∴ 5 sin x - 3 cos x = ± 3 ............. Q.E.D.
∴ ( 3 sin x + 5 cos x )² = 5²
∴ 9 sin² x + 25 cos² x + 30 sin x cos x = 25
∴ 9(1-cos² x) + 25(1-sin² x) + 30 sin x cos x = 25
∴ 9 - 9cos² x + 25 - 25sin² x + 30 sin x cos x = 25
∴ 9 = 25 sin² x + 9 cos² x - 30 sin x cos x
∴ 9 = ( 5 sin x - 3 cos x )²
∴ 5 sin x - 3 cos x = ± √9
∴ 5 sin x - 3 cos x = ± 3 ............. Q.E.D.
mantri511:
there is 4 not 5
Answered by
10
Given:
(3 sinθ+5cosθ)²= 5²
Squaring on both sides.
(3sinθ)²+(5cosθ)²+2× 3sinθ 5cosθ= 25
[a+b= a²+b²+2ab]
9sin²θ+ 25cos²θ+30sinθcosθ= 25
9 (1-cos²θ) + 25(1-sin²θ)+30sinθcosθ=25
[sin²θ + cos²θ =1]
9-9cos²θ + 25-25sin²θ +30sinθcosθ=25
9+25 -(9cos²θ +25sin²θ -30sinθcosθ) =25
34 - (9cos²θ +25sin²θ -30sinθcosθ) =25
- (25sin²θ +9cos²θ-30sinθcosθ) =25-34
(25sin²θ+9cos²θ -30sinθcosθ) =9
(5sinθ - 3cosθ)²= 9
(5sinθ - 3cosθ)= √9
(5sinθ - 3cosθ)= ±3
L.H.S = R.H.S
this is your answer..
(3 sinθ+5cosθ)²= 5²
Squaring on both sides.
(3sinθ)²+(5cosθ)²+2× 3sinθ 5cosθ= 25
[a+b= a²+b²+2ab]
9sin²θ+ 25cos²θ+30sinθcosθ= 25
9 (1-cos²θ) + 25(1-sin²θ)+30sinθcosθ=25
[sin²θ + cos²θ =1]
9-9cos²θ + 25-25sin²θ +30sinθcosθ=25
9+25 -(9cos²θ +25sin²θ -30sinθcosθ) =25
34 - (9cos²θ +25sin²θ -30sinθcosθ) =25
- (25sin²θ +9cos²θ-30sinθcosθ) =25-34
(25sin²θ+9cos²θ -30sinθcosθ) =9
(5sinθ - 3cosθ)²= 9
(5sinθ - 3cosθ)= √9
(5sinθ - 3cosθ)= ±3
L.H.S = R.H.S
this is your answer..
Similar questions