√3 sin x = cos x
find the value of x
Answers
Answered by
0
Step-by-step explanation:
x=30..hope it's helpful to you
Answered by
9
Solution :-
Here,
√3 Sin x = Cos x
By cross multiplying , we get
√3 Sin x = Cos x
Sin x / Cos x = 1 / √3
As we know that ,
Sin x / Cos x = Tan x
So,
Tan x = 1 / √3 ........eq(1)
Since ,
Tan 30° = 1/ √3 .........eq(2)
From eq(1) and eq(2)
The value of x = 30°
Values of trigonometric ratios
- Sin 0° = 0
- Sin 30° = 0
- Sin 45° = 1/√2
- Sin 60° = √3/2
- Sin 90° = 1
- Cos 0° = 1
- Cos 30° = √3/2
- Cos 45° = 1 /√2
- Cos 60° = 1/2
- Cos 90° = 0
- Tan 0° = 0
- Tan 30° = 1/√3
- Tan 45° = 1
- Tan 60° = √3
- Tan 90° = Not defined
- Cosec 0° = Not defined
- Cosec 30° = 2
- Cosec 45° = √2
- Cosec 60° = 2/√3
- Cosec 90° = 1
- Sec 0° = 1
- Sec 30° = 2/√3
- Sec 45° = √2
- Sec 60° = 2
- Sec 90°= Not defined
- Cot 0° = Not defined
- Cot 30° = √3
- Cot 45° = 1
- Cot 60° = 1/√3
- Cot 90° = 0
Some more info ,
Tan theta = sin theta / cos theta
Cot theta = 1/ Tan theta
Sec theta = 1 / Cos theta
Cosec theta = 1 / Sin theta
Similar questions