3. Sketch the graph of the following function:
2 + 1 < 3
f(x) = { 5 = 3 −5 ≤ x ≤ 5 With an intervals of 0.5. 6 > 3
Find lim ()
→3
Answers
Answered by
0
We have,
f(x)={2x+3,3(x+1)x≤0x≥0
For the first case:
L.H.L: x→0−limf(x)=x→0−lim(2x+3)=2×0+3=3
R.H.L: x→0+limf(x)=x→0+lim3(x+1)=3(0+1)=3
So, x→0limf(x) exists and is equal to 3
For the second case:
L.H.L: x→1−limf(x)=x→1−lim2x+3=2×1+3=5
R.H.L: x→1+limf(x)=x→1+lim3(x+1)=3(1+1)=6
Since, x→1−limf(x)=x→1+limf(x)
Hence, x→1−limf(x) does not exist.
Similar questions