Math, asked by mohirevaibhavi, 3 months ago

3. Solve the following quadratic equations by
factorisation method :
6 +  \sqrt{3 {x}^{2} }  + 7x = 3

Answers

Answered by mathdude500
2

\large\underline{\bold{Given \:Question - }}

 \bf \: Solve \: the \: following \: by \: factorisation \: method :

\rm :\longmapsto\: 6 +  \sqrt{ {3x}^{2} }  + 7x = 3

\large\underline{\sf{Solution-}}

Consider,

\rm :\longmapsto\: 6 +  \sqrt{ {3x}^{2} }  + 7x = 3

\rm :\longmapsto\:\sqrt{ {3x}^{2} } = 3 - 6 - 7x

\rm :\longmapsto\:\sqrt{ {3x}^{2} } = - \: 3 \: -  \: 7x

\rm :\longmapsto\:\sqrt{ {3x}^{2} } = - \:( 3 \:  +  \: 7x)

On squaring both sides, we get

\rm :\longmapsto\:3 {x}^{2}  = 9 +  {49x}^{2}  + 42x

 \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \sf \: \because \:  {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy}

\rm :\longmapsto\: {46x}^{2}  + 42x + 9  = 0

Divide both sides by 46, we get

\rm :\longmapsto\: {x}^{2}  + \dfrac{42}{46} x + \dfrac{9}{46}  = 0

\rm :\longmapsto\: {x}^{2}  + \dfrac{(21 + 21)}{46} x + \dfrac{9}{46}  = 0

\rm :\longmapsto\: {x}^{2}  + \dfrac{(21 + 21 + 3 \sqrt{3} - 3 \sqrt{3}  )}{46} x + \dfrac{9}{46}  = 0

\rm :\longmapsto\: {x}^{2}  + \dfrac{(21 + 3 \sqrt{3})+(21 - 3 \sqrt{3})}{46} x + \dfrac{9}{46}  = 0

\rm :\longmapsto\: {x}^{2} + \dfrac{(21 + 3 \sqrt{3}) }{46}x + \dfrac{(21 - 3 \sqrt{3}) }{46}x +  \dfrac{9}{46}  = 0

\rm \:x\bigg( x + \dfrac{(21 + 3 \sqrt{3}) }{46}\bigg) + \dfrac{(21  -  3 \sqrt{3}) }{46}\bigg(x +  \dfrac{9}{46}  \times \dfrac{46}{21  -  3 \sqrt{3}}  \bigg) = 0

  \bigg(\red{ \sf \: \frac{9 \times 46}{21 + 3 \sqrt{3}} \times \frac{21 -3 \sqrt{3}  }{21 - 3 \sqrt{3}}  = \frac{414(21 - 3 \sqrt{3}) }{441 - 27} =  \frac{414(21 - 3 \sqrt{3}) }{414} = 21 - 3 \sqrt{3}} \bigg)

\rm \:x\bigg( x + \dfrac{(21 + 3 \sqrt{3}) }{46}\bigg) + \dfrac{(21  -  3 \sqrt{3}) }{46}\bigg(x +  \dfrac{21 + 3 \sqrt{3} }{46} \bigg) = 0

\rm :\longmapsto\:{\bigg(x + \dfrac{(21 + 3 \sqrt{3}) }{46}\bigg) }{\bigg(x  +  \dfrac{(21  - 3 \sqrt{3}) }{46} \bigg) } = 0

\rm :\implies\:x =  - \dfrac{(21 + 3 \sqrt{3}) }{46} \:  \: or \:  -  \: \dfrac{(21  -  3 \sqrt{3}) }{46}

Basic Concept Used :-

Splitting of middle terms :-

  • In order to factorize,  ax² + bx + c we have to find numbers p and q such that p + q = b and pq = ac.

  • After finding p and q, we split the middle term in the quadratic as px + qx and get desired factors by grouping the terms.

Similar questions