Math, asked by vacef10250, 5 months ago

3 sum geometry

plz help need tommorow

plz

Attachments:

Answers

Answered by Advithavulchi
2

Answer:

x:140 degrees

y:110 degrees

z:100 degrees

please do thank me

please mark me as brainlliest


vacef10250: how to make it brainlliest?
Answered by MrImpeccable
17

{\huge{\underline{\boxed{\red{\mathcal{Answer}}}}}}

a) Given

  • P(AB) // Q(CD)
  • Line m(GH) is transversal
  • Angle HEB = 40°

To Find:

  • Value of x

Solution:

 As\:P//Q\:and\:m\:is\:transversal \\ \implies Angle\: HEB\:=\:Angle \:EFD\:=\:40^{\circ} -----(Corresponding\:Angles) \\ \implies Angle\: EFC \:+ \:Angle\:EFD\:=\:180^{\circ} -----(CD\:is\:a\:straight\:line)\\ \implies x\:+\:40^{\circ}\:=\:180^{\circ} \\ \implies\bold{ x\:=\:140^{\circ} }\\ \\

b) Given:

  • Angle ACD = 40°
  • Angle ECB = 30°
  • AB is a straight line

To Find:

  • Value of y

Solution:

 As\:AB\:is\:a\:straight\:line \\ \implies Angle \:ACD \:+\: Angle \:DCE + Angle \:ECB\: = \: 180^{\circ} \\ \implies 40^{\circ} + y + 30^{\circ}\:=\: 180^{\circ} \\ \implies y\: =\: 180^{\circ}\:-\: 70^{\circ} \\ \implies \bold{ y \: =\: 110^{\circ} } \\ \\

c) Given:

  • Angle SPT = 60°
  • Angle QTR = 20°

To Find:

  • Value of z

Solution:

 \implies Angle \:STP\:=\: Angle \:RTQ \:=\:20^{\circ} -----(Vertically\: opp.\: angles) \\ In\:\Delta\:PTS\\ \implies Angle \:STP\:+ \:Angle \:SPT\: +\:Angle \:PST \:=\:180^{\circ} ------(Angle \:sum\: of\: Triangle) \\ \implies 20^{\circ}\:+\: 60^{\circ} \:+\:z\:=\:180^{\circ} \\ \implies z\:=\:180^{\circ}\:-\:80^{\circ} \\ \implies \bold{ z\:=\:100^{\circ}} \\ \\

Hope it helps!!!

Attachments:

Anonymous: Excellent
vacef10250: Thank you
Similar questions