3. Taking velocity, time and force as the fundamental quantities find the dimensions of mass.
ruuuurutu:
haye I will answer u
Answers
Answered by
2
M=kV^aT^bF^c
{M}={LT^-1}^a{T}^b{MLT^-2}^c
{M}={L^aT^-a}{T^b}{M^cL^cT^-2c}
{M}={M^cL^a+cT^-a+b-2c}
on comparing
c=1
a+c=0
a+1=0
a=-1
-a+b-2c=0
1+b-2=0
b=1
hence,m=ktf/v
{M}={LT^-1}^a{T}^b{MLT^-2}^c
{M}={L^aT^-a}{T^b}{M^cL^cT^-2c}
{M}={M^cL^a+cT^-a+b-2c}
on comparing
c=1
a+c=0
a+1=0
a=-1
-a+b-2c=0
1+b-2=0
b=1
hence,m=ktf/v
Similar questions