(3 tan 15°)-(tan^3 15°)÷(1-3tan^2 15°)
=
Answers
Answered by
0
EXPLANATION.
⇒ [(3tan15°) - (tan³15°)]/[1 - 3tan²15°].
As we know that,
Formula of :
⇒ tan3θ = (3tanθ - tan³θ)/(1 - 3tan²θ).
Using this formula in this question, we get.
⇒ [(3tan15°) - (tan³15°)]/[1 - 3tan²15°] = tan 3(15°).
⇒ [(3tan15°) - (tan³15°)]/[1 - 3tan²15°] = tan(45°).
⇒ [(3tan15°) - (tan³15°)]/[1 - 3tan²15°] = 1.
∴ The value of [(3tan15°) - (tan³15°)]/[1 - 3tan²15°] is equal to 1.
MORE INFORMATION.
Trigonometric ratios of multiple angles.
sin2θ = 2sinθcosθ = 2tanθ/(1 + tan²θ).
cos2θ = 2cos²θ - 1 = 1 - 2sin²θ = cos²θ - sin²θ = (1 - tan²θ)/(1 + tan²θ).
tan2θ = 2tanθ/(1 - tan²θ).
sin3θ = 3sinθ - 4sin³θ.
cos3θ = 4cos³θ - 3cosθ.
tan3θ = (3tanθ - tan³θ)/(1 - 3tan²θ).
Similar questions