3 tan theta + cot theta equal to 5 cosec theta
Answers
Answered by
99
3tanθ + cotθ = 5cosecθ
as you know,
tanθ = sinθ/cosθ , cotθ = cosθ/sinθ and cosecθ = 1/sinθ use it here,
⇒3tanθ + cotθ = 5cosecθ
⇒3sinθ/cosθ + cosθ/sinθ = 5/sinθ
⇒(3sin²θ + cos²θ)/sinθ.cosθ = 5/sinθ
⇒3sin²θ + cos²θ = 5cosθ
We know, sin²θ = 1 - cos²θ use it here,
⇒3(1 - cos²θ) + cos²θ - 5cosθ = 0
⇒3 - 3cos²θ + cos²θ - 5cosθ = 0
⇒2cos²θ + 5cosθ - 3 = 0
⇒2cos²θ + 6cosθ - cosθ - 3 = 0
⇒2cosθ(cosθ + 3) - (cosθ+ 3) = 0
⇒(2cosθ - 1)(cosθ + 3) = 0
⇒cosθ = 1/2 and -3 but cosθ∈[ -1, 1 ] so, cosθ ≠ -3
Hence, cosθ = 1/2 = cosπ/3
θ = 2nπ ± π/3 [ by using general solution of trigonometric ]
as you know,
tanθ = sinθ/cosθ , cotθ = cosθ/sinθ and cosecθ = 1/sinθ use it here,
⇒3tanθ + cotθ = 5cosecθ
⇒3sinθ/cosθ + cosθ/sinθ = 5/sinθ
⇒(3sin²θ + cos²θ)/sinθ.cosθ = 5/sinθ
⇒3sin²θ + cos²θ = 5cosθ
We know, sin²θ = 1 - cos²θ use it here,
⇒3(1 - cos²θ) + cos²θ - 5cosθ = 0
⇒3 - 3cos²θ + cos²θ - 5cosθ = 0
⇒2cos²θ + 5cosθ - 3 = 0
⇒2cos²θ + 6cosθ - cosθ - 3 = 0
⇒2cosθ(cosθ + 3) - (cosθ+ 3) = 0
⇒(2cosθ - 1)(cosθ + 3) = 0
⇒cosθ = 1/2 and -3 but cosθ∈[ -1, 1 ] so, cosθ ≠ -3
Hence, cosθ = 1/2 = cosπ/3
θ = 2nπ ± π/3 [ by using general solution of trigonometric ]
Answered by
62
3tanθ + cotθ = 5cosecθ
⇒3sinθ/cosθ + cosθ/sinθ = 5/sinθ
⇒(3sin²θ + cos²θ)/sinθ.cosθ = 5/sinθ
⇒3sin²θ + cos²θ = 5cosθ
We know, sin²θ = 1 - cos²θ use it here,
⇒3(1 - cos²θ) + cos²θ - 5cosθ = 0
⇒3 - 3cos²θ + cos²θ - 5cosθ = 0
⇒2cos²θ + 5cosθ - 3 = 0
⇒2cos²θ + 6cosθ - cosθ - 3 = 0
⇒2cosθ(cosθ + 3) - (cosθ+ 3) = 0
⇒(2cosθ - 1)(cosθ + 3) = 0
⇒cosθ = 1/2 and -3
But, cosθ ≠ -3
Hence, cosθ = 1/2
θ=60°
Please mark as the brainliest
Similar questions