3 tan0 = 4, find the value of 4 COS 0 - Sin 0 / 2 COS 0 + sin 0
Answers
Answered by
10
Answer:-
(Theta is taken as "A".)
Given:
3 tan A = 4
→ tan A = 4/3
We know that,
Tan A = Opposite side/Adjacent side
Hence,
Opposite side = 4
Adjacent side = 3
Using Pythagoras Theorem,
→ (Hypotenuse)² = (Opposite side)² + (Adjacent side)²
→ Hypotenuse = √[(4)² + (3)²]
→ Hypotenuse = √16 + 9
→ Hypotenuse = √25 = 5
Hence,
sin A = opposite side/hypotenuse
→ sin A = 4/5
Cos A = adjacent side/Hypotenuse
→ Cos A = 3/5
→ 4 Cos A - sin A = 4(3/5) - (4/5)
→ 4 Cos A - sin A = (12 - 4)/5
→ 4 Cos A - sin A = 8/5
→ 2 Cos A + sin A = 2(3/5) + (4/5)
→ 2 Cos A + sin A = (6 + 4)/5
→ 2 Cos A + sin A = 10/5
Hence,
(4 Cos A - sin A)/(2 Cos A + sin A) = (8/5)/(10/5)
→ (4 Cos A - sin A)/(2 Cos A + sin A) = 8/5*5/10
→ (4 Cos A - sin A)/(2 Cos A + sin A) = 4/5
Similar questions