Math, asked by akshatfbd07, 1 month ago

3
3 \sqrt{2 - 2 \sqrt{3 \div 3 \sqrt{2 +3 \sqrt{2 + 2 \sqrt{3 +  \sqrt{12 \div  \sqrt{3 -  \sqrt{2} } } } } } } ]{?} }
please tell fast​

Answers

Answered by herobrine135792021
0

Answer:

Here are some commonly used math commands in LaTeX:

Fractions

Symbol Command

$\frac {1}{2}$ \frac{1}{2} or \frac12

$\frac{2}{x+2}$ \frac{2}{x+2}

$\frac{1+\frac{1}{x}}{3x + 2}$ \frac{1+\frac{1}{x}}{3x + 2}

Notice that with fractions with a 1-digit numerator and a 1-digit denominator, we can simply group the numerator and the denominator together as one number. However, for fractions with either a numerator or a denominator that requires more than one character (or if the numerator starts with a letter), you need to surround everything in curly brackets.

Use \cfrac for continued fractions.

Expression Command

$\cfrac{2}{1+\cfrac{2}{1+\cfrac{2}{1+\cfrac{2}{1}}}}$ \cfrac{2}{1+\cfrac{2}{1+\cfrac{2}{1+\cfrac{2}{1}}}}

Radicals

Symbol Command

$\sqrt{3}$ \sqrt{3}

$\sqrt{x+y}$ \sqrt{x+y}

$\sqrt{x+\frac{1}{2}}$ \sqrt{x+\frac{1}{2}}

$\sqrt[3]{3}$ \sqrt[3]{3}

$\sqrt[n]{x}$ \sqrt[n]{x}

Sums, Products, Limits and Logarithms

Use the commands \sum, \prod, \lim, and \log respectively. To denote lower and upper bounds, or the base of the logarithm, use _ and ^ in the same way they are used for subscripts and superscripts. (Lower and upper bounds for integrals work the same way, as you'll see in the calculus section)

Symbol Command

$\textstyle \sum_{i=1}^{\infty}\frac{1}{i}$ \sum_{i=1}^{\infty}\frac{1}{i}

$\textstyle \prod_{n=1}^5\frac{n}{n-1}$ \prod_{n=1}^5\frac{n}{n-1}

$\textstyle \lim_{x\to\infty}\frac{1}{x}$ \lim_{x\to\infty}\frac{1}{x}

$\textstyle \lim\limits_{x\to\infty}\frac{1}{x}$ \lim\limits_{x\to\infty}\frac{1}{x}

$\textstyle \log_n n^2$ \log_n n^2

Some of these are prettier in display mode:

Symbol Command

$\sum_{i=1}^{\infty}\frac{1}{i}$ \sum_{i=1}^{\infty}\frac{1}{i}

$\prod_{n=1}^5\frac{n}{n-1}$ \prod_{n=1}^5\frac{n}{n-1}

$\lim_{x\to\infty}\frac{1}{x}$ \lim_{x\to\infty}\frac{1}{x}

Note that we can use sums, products, and logarithms without _ or ^ modifiers.

Symbol Command

$\sum\frac{1}{i}$ \sum\frac{1}{i}

$\frac{n}{n-1}$ \frac{n}{n-1}

$\textstyle \log n^2$ \log n^2

$\textstyle \ln e$ \ln e

Mods

Symbol Command

$9\equiv 3 \bmod{6}$ 9\equiv 3 \bmod{6}

$9\equiv 3 \pmod{6}$ 9\equiv 3 \pmod{6}

$9\equiv 3 \mod{6}$ 9\equiv 3 \mod{6}

$9\equiv 3\pod{6}$ 9\equiv 3 \pod{6}

Combinations

Symbol Command

$\scriptstyle\binom{1}{1}$ \binom{1}{1}

$\scriptstyle\binom{n-1}{r-1}$ \binom{n-1}{r-1}

These often look better in display mode:

Symbol Command

$\dbinom{9}{3}$ \dbinom{9}{3}

$\dbinom{n-1}{r-1}$ \dbinom{n-1}{r-1}

Trigonometric Functions

Most of these are just the abbreviation of the trigonometric function with simply a backslash added before the abbreviation.

Symbol Command Symbol Command Symbol Command

$\textstyle \cos$ \cos $\textstyle \sin$ \sin $\textstyle \tan$ \tan

$\sec$ \sec $\textstyle \textstyle \csc$ \csc $\textstyle \cot$ \cot

$\textstyle \arccos$ \arccos $\textstyle \arcsin$ \arcsin $\textstyle \arctan$ \arctan

$\textstyle \cosh$ \cosh $\textstyle \sinh$ \sinh $\textstyle \tanh$ \tanh

$\textstyle \coth$ \coth

Here are a couple examples:

Symbol Command

$\textstyle \cos^2 x +\sin^2 x = 1$ \cos^2 x +\sin^2 x = 1

$\cos 90^\circ = 0$ \cos 90^\circ = 0

Calculus

Below are examples of calculus expressions rendered in LaTeX. Most of these commands have been introduced before. Notice how definite integrals are rendered (and the difference between regular math and display mode for definite integrals). The \, in the integrals makes a small space before the dx.

Symbol Command

$\frac{d}{dx}\left(x^2\right) = 2x$ \frac{d}{dx}\left(x^2\right) = 2x

$\int 2x\,dx = x^2+C$ \int 2x\,dx = x^2+C

$\int^5_1 2x\,dx = 24$ \int^5_1 2x\,dx = 24

$\int^5_1 2x\,dx = 24$ \int^5_1 2x\,dx = 24

$\frac{\partial^2U}{\partial x^2} + \frac{\partial^2U}{\partial y^2}$ \frac{\partial^2U}{\partial x^2} + \frac{\partial^2U}{\partial y^2}

$\frac{1}{4\pi}\oint_\Sigma\frac{1}{r}\frac{\partial U}{\partial n} ds$ \frac{1}{4\pi}\oint_\Sigma\frac{1}{r}\frac{\partial U}{\partial n} ds

Overline and Underline

Symbol Command

$\overline{a+bi}$ \overline{a+bi}

$\underline{747}$ \underline{747}

Step-by-step explanation:

please mark me as brainliest

Similar questions