Math, asked by wasteeeeedddb, 5 months ago

3. The diameter of metallic sphere is 6cm. It is melted and drawn into the

wire having diameter of 0.2 cm. Find the length of the wire.​

Answers

Answered by itzpriya22
2

Answer:-

\red{\bigstar} Length of the wire is \large\leadsto\boxed{\tt\green{3600 \: cm \:or \: 36 \: m}}

⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Given:-

  • Diameter of metallic sphere = 6 cm

  • Diameter of wire = 0.2 cm

⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

To Find:-

  • Length of the wire

⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Solution:-

Given that,

Diameter of metallic sphere is 6 cm.

Hence,

Radius of the metallic sphere = d/2

➠ 6/2

➠ 3 cm

⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Also,

⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Diameter of the wire is 0.2 cm

Therefore,

Radius of cylindrical wire = d/2

➠ 0.2/2

➠ 0.1 cm

⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Now, the metallic sphere is melted into cylindrical wire.

Hence,

★ Volume of sphere = Volume of Cylinder

\pink{\bigstar} \large\underline{\boxed{\bf\green{\dfrac{4}{3} \pi r^{3} = \pi r^2 h}}}

⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Substituting in the Formula:-

\sf \dfrac{4}{3} \times \pi \times (3)^3 = \pi \times (0.1)^2 \times h

⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf \dfrac{4}{3} \times \pi \times 27 = \pi \times 0.01 \times h

⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf 4 \times \pi \times 9 =  \pi \times 0.01 \times h

⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf 36 \: \pi = \pi \times 0.01 \times h

⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf h = \dfrac{36 \: \pi}{0.01 \: \pi}

⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf h = \dfrac{36}{0.01}

⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\bf h = 3600

⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\large{\bf\purple{h = 3600 \: cm \: or \: 36 \: m}}

⠀⠀ ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Therefore, length of the wire is 3600 cm or 36m.

Answered by Anonymous
0

Given,

Diameter of metallic sphere =6cm

Radius of metallic sphere =3cm

Diameter of melted wire = 0.2cm

Radius of melted wire = 0.1cm

Volume of the metal used in wire= Volume of the sphere

π× {r}^{2} ×h= \frac{4}{3} ×π× {r}^{3}

π× {(0.1)}^{2} ×h=  \frac{4}{3} ×π× {3}^{3} </p><p>

π×  { (\frac{1}{10} )}^{2} ×h= \frac{4}{3} ×π×27

π× \frac{1}{100 } ×h=36π</p><p></p><p></p><p>

h= \frac{36π×100}{\pi} cm=3600cm=36metres</p><p></p><p></p><p>

Similar questions