Math, asked by rohanguptakaman791, 10 months ago

3] The Mean and S.D. for group of
100 observations are 65 and 7.03
respectively If 60 of these
observations have mean and S.D.
as 70 and 3 respectively, what is
the S.D. for the group comprising
40 observations?​

Answers

Answered by Alcaa
33

Answer:

S.D. for the group comprising  40 observations is 4.

Step-by-step explanation:

We are given that Mean and S.D. for group of  100 observations are 65 and 7.03  respectively. Also, 60 of these  observations have mean and S.D.  as 70 and 3 respectively.

Mean formula is given by, Xbar = \frac{\sum X}{n}

Mean of 100 observations = \frac{\sum X_1_0_0}{100}

                                65     = \frac{\sum X_1_0_0}{100}

Therefore sum of values of 100 observations, \sum X_1_0_0 = 65 * 100 = 6500

Similarly, sum of values of 60 observations, \sum X_6_0 = 70 * 60 = 4200

So, sum of values of remaining 40 observations, \sum X_4_0 = 6500-4200 = 2300  

Therefore, Mean of remaining 40 observations, Xbar_4_0 = \frac{\sum X_4_0}{40} = \frac{2300}{40} = 57.5 .

Now, Standard deviation formula is given by, S.D. = \sqrt{\frac{\sum X^{2} - n*Xbar^{2} }{n-1} }

Standard deviation of 100 observations, S.D._1_0_0 = \sqrt{\frac{\sum X_1_0_0^{2} - 100*65^{2} }{100-1} }

                 7.03 = \sqrt{\frac{\sum X^{2}_1_0_0 - 100*65^{2} }{100-1} }

                 7.03^{2} = \frac{\sum X^{2}_1_0_0 - 100*65^{2} }{100-1}

Therefore, \sum X^{2}__1_0_0 = (7.03^{2} * 99) + (100*65^{2}) = 427392.67

Similarly, S.D._6_0 = \frac{\sum X^{2}_6_0 - 60*70^{2} }{60-1}

            \sum X^{2}__6_0 = (3^{2} * 59) + (60*70^{2}) = 294531

So,sum of squares of remaining 40 observations,\sum X^{2}__4_0 = 427392.67-294531

                                                                                             = 132861.67

Therefore, S.D. of remaining 40 observations = \sqrt{\frac{\sum X^{2}_4_0 - 40*(Xbar_4_0)^{2} }{40-1} }

                                                                            = \sqrt{\frac{132861.67 - 40*57.5^{2} }{39} } = 3.96 ≈ 4.

Hence, S.D. for the group comprising  40 observations is 4.

Answered by shashi821101
1

Answer:

the solutions is here see

Attachments:
Similar questions