Math, asked by ashwin7259, 9 months ago

3. The ratio in which the line segment joining A(6, 3) and B(-2,-5) is divided by the x
(a) 2:3 (b) 3:2 (c) 3:5 (d) 1:3​

Answers

Answered by tarleenk9203
13

Answer:3:5

Step-by-step explanation:

Attachments:
Answered by itzshrutiBasrani
3

Step-by-step explanation:

The line segment is (3,−3) and B(−2,7)

Let the point on x - axis be (x,0) which divides the line in the ratio of m:n.

Then,

using section formula,

(xy) = (\frac{m \times x2 \times n \times x1}{m + n} or \:  \frac{m \times y2  + n \times y1}{m + n} )

0 =  \frac{7m - 3n}{m + n}

7m = 3n

 \frac{m}{n}  =  \frac{3}{7}

Thus, the coordinates of x-axis will be:

x =  \frac{3( - 2) + 7(3)}{7 + 3}

x =  \frac{15}{10}  =  \frac{3}{2}

Thus, the line segment AB is divided in the ratio

 \frac{3}{7}

at the point

( \frac{3}{2}  \: 0)

Thus, 2 times the x-coordinate is 3

Hence , Option A is the correct Option 2:3

Similar questions