Math, asked by anshv69, 6 months ago

3. The shape of a garden is rectangular in the middle and semicircular
at the ends as shown in the diagram. Find the area and the perimeter
T of this garden (Length of rectangle is
7m 20-(35 +3.5) metres ).

Answers

Answered by mehreennaikoo123
3

\underline\bold\green{step \: by \: step \: explination}</p><p></p><p></p><p>

Total area of the garden = Area of the rectangular portion + The sum of the areas of the pair of semi-circles

l.b + 2 \times  \frac{1}{2}\pi {r}^{2}

 = (13 \times 7) {m}^{2}  +

(2 \times  \frac{1}{2}  \times  \frac{22}{7}  \times 3.5 \times 3.5) {m}^{2}

 = (91 + 38.5) {m}^{2}  = 129.5 {m}^{2}

Perimeter of the garden =2× length of rectangular portion + circumference of the circle

 = (2 \times 13 + 2 \times  \frac{22}{7}  \times 3.5)m

 = (26 + 22)m = 48m

Answered by Anonymous
13

{\large{\bold{Question:-}}}

The shape of a garden is rectangular in the middle and semicircular at the ends as shown in the diagram. Find the area and the perimeter of this garden.

[Length of rectangle is 20 – (3.5 + 3.5) metres]

{\large{\bold{given:-}}}

length of rectangle = 20 - (3.5+3.5)

                                  = 20 - 7

                                    = 13m

Area of rectangle = l × b

                                = 13 × 7

                           = 91{m}^{2}

Area of two circular ends = {2( \dfrac{1}{2}\:π\:{r}^{2}})

                                           = {π\:{r}^{2}}

                                            = { \dfrac{22}{7}\:×\: \dfrac{7}{2}\:×\: \dfrac{7}{2}}

                                            = { \dfrac{77}{2}\:{m}^{2}}

__________

Total area

                   = Area of rec. + area of two ends

                    = {91\:{m}^{2}} + {38.5\:{m}^{2}}

                      = {129.5\:{m}^{2}}

__________

Total perimeter

                    = perimeter of rec. + perimeter of two ends

                    = {2(l+b)+2×(\pi\:r)-2(2\:\pi)}

                     = {2×20+22-14}

                     = {40+22-14}

             = {48m}

Similar questions