Math, asked by akfbd9695139137, 10 months ago

3. The sum of a number of two digits and the number obtained on interchanging the digits is 99. If 5 is
added to the number, then it is 4 less than 6 times the sum of digits. find the number ​

Answers

Answered by Anonymous
17

Answer :-

The number is 45.

Given :-

  • The sum of a number of two digits and the number obtained on interchanging the digits = 99

To FinD :-

  • What is the number ?

Solution :-

Let the number is 10x + y

According to the first condition

\longrightarrow10x + y + 10y + x = 99 \\  \\ \longrightarrow11x + 11y = 99 \\  \\ \longrightarrow11(x + y) = 99 \\  \\ \longrightarrow \: x + y =  \frac{99}{11}  \\  \\ \longrightarrow \: x + y = 9  \\  \\ \longrightarrow \: y = 9 - x -  -  -  -  - (i)

Now, According to the second condition :-

\longrightarrow10x + y + 5 = 6(x + y) - 4 \\  \\ \longrightarrow10x + y + 5 = 6x + 6y - 4 \\  \\ \longrightarrow10x  + y - 6x - 6y =  - 4 - 5 \\  \\ \longrightarrow4x - 5y =  - 9

Now putting the value of y from the equation (i)

\longrightarrow4x - 5y =  - 9 \\  \\\longrightarrow \: 4x - 5(9 - x) =  - 9 \\  \\\longrightarrow 4x - 45 + 5x =  - 9 \\  \\ \longrightarrow \: 9x =  - 9 + 45 \\  \\ \longrightarrow \: 9x = 36 \\  \\ \longrightarrow \: x =  \frac{36}{9}  \\  \\ \longrightarrow \: x = 4

Now put the value of x into the equation (i)

\longrightarrow \: y = 9 - x \\  \\ \longrightarrow \: y = 9 - 4 \\  \\ \longrightarrow \: y = 5

So, the number is -

\longrightarrow10x +y  \\  \\ \longrightarrow10 \times 4 + 5 \\  \\ \longrightarrow40 + 5 \\  \\ \longrightarrow45

Similar questions