Math, asked by tabassum1980khan, 2 months ago

3. The surface area of a sphere same as the CSA
of a right circular cylinder whose height and
diameter are 4cm each Find the radius of the Sphere


Answers

Answered by ItzWhiteStorm
307

✫ The radius of the sphere is 2 cm✫

Step-by-step explanation:

Given:-

  • Height = 4 cm
  • Diameter = 4 cm

To find:-

  • Radius of sphere

Required Formula:-

  • Surface area of sphere = 4πr²
  • CSA of right circular cylinder = 2πrh

Solution:-

Where,

  • Radius = d/2 =  4/2 = 2 cm

Putting the values,

\\ :\implies\sf{CSA = 2 \times \pi \times 2\times 4}\\ \\ :\implies\sf{CSA=2\times \pi \times 8}\\ \\ :\implies\sf{CSA=16\times \pi}\\ \\

As here the surface area of a sphere same as the csa of right circular cylinder,so

\\ :\implies\sf{4\pi r^2=\pi\times 16}\\ \\ :\implies\sf{r^2=\cancel{\frac{16}{4}}} \\ \\ :\implies\sf{r^2 = 4}\\ \\ :\implies\sf{r=\sqrt{4}}\\ \\ :\implies\underline{\boxed{\pink{\mathfrak{r = 2}}}}\;\bigstar \\ \\

  • ∴ Hence,the radius of the sphere is 2 cm.
Answered by Anonymous
292

Given:-  

  • Height = 4cm

  • Diameter = 4cm

To find:-  

  • Radius

Solution:-  

Firstly we have to find the CSA of a cylinder

  • \sf{Radius\:=\:\dfrac{Diameter}{2}\:=\:\dfrac{4}{2}\:=\:2cm}

\sf{\longmapsto\:CSA\:=\:2\pi rh}

\sf{\longmapsto\:CSA\:=\:2\:\times\:\pi \:\times\:2\:\times\:4}

\sf{\longmapsto\:CSA\:=\:2\:\times\:\pi \:\times\:8}

\sf{\longmapsto\:CSA\:=\:16\:\times\:\pi }

  • On the given data, the surface area of a sphere = the CSA of the right circular cylinder,

\sf{\longmapsto\:Surface\:Area\:_{(Sphere)}\:=\:CSA\:_{(Right\:circular\:cylinder)}}

\sf{\longmapsto\:4\pi r^{2}\:=\:\pi \:\times\:16}}

\sf{\longmapsto\:(Radius)^{2}\:\:=\:\dfrac{16}{4}}

\sf{\longmapsto\:(Radius)^{2}\:\:=\:4}

\sf{\longmapsto\:Radius\:=\:\sqrt{4} }

\sf{\longmapsto\:Radius\:=\:2cm}

\texttt{\underline{Therefore\:the\:radius\:of\:the\:sphere\:is\:2cm\:.}}

Similar questions