Physics, asked by aanyadixit1329, 5 hours ago

3. The velocity of a particle of mass 150 g changes from 8 m/s to 12 m/s in two seconds. Assuming that a constant force acts on it, find the magnitude of the force.​

Answers

Answered by Anonymous
6

Answer:

Provided that:

  • Initial velocity = 8 m/s
  • Time = 2 seconds
  • Final velocity = 12 m/s
  • Mass = 150 g

To calculate:

  • The force

Solution:

  • The force = 0.30 Newton

Knowledge required:

  • SI unit of mass = kg
  • SI unit of force = Newton (N)
  • SI unit of time = second (s)
  • SI unit of velocity (m/s)

Using concepts:

  • Formula to convert g into kg
  • Force formula

Using formulas:

  • {\small{\underline{\boxed{\pmb{\sf{F \: = m \cdot  \bigg \lgroup \dfrac{v-u}{t} \bigg \rgroup}}}}}}

Where, a denotes acceleration, u denotes initial velocity, F denotes force v denotes final velocity, m denotes mass and t denotes time taken.

  • {\small{\underline{\boxed{\pmb{\sf{1 \: g \: = \dfrac{1}{1000} \: kg}}}}}}

Required solution:

~ Firstly let us convert grams into kilograms by using suitable formula!

:\implies \sf 1 \: g \: = \dfrac{1}{1000} \: kg \\ \\ :\implies \sf 150 \: g \: = \dfrac{150}{1000} \: kg \\ \\ :\implies \sf 150 \: g \: = \dfrac{15}{100} \: kg \\ \\ :\implies \sf 150 \: g \: = 0.15 \: kg \\ \\ {\pmb{\sf{Henceforth, \: converted!}}}

~ Now let's calculate force!

:\implies \sf F \: = m \cdot  \bigg \lgroup \dfrac{v-u}{t} \bigg \rgroup \\ \\ :\implies \sf F \: = 0.15 \cdot  \bigg \lgroup \dfrac{12-8}{2} \bigg \rgroup \\ \\ :\implies \sf F \: = 0.15 \cdot  \bigg \lgroup \dfrac{4}{2} \bigg \rgroup \\ \\ :\implies \sf F \: = 0.15 \cdot 2 \\ \\ :\implies \sf F \: = 0.30 \: Newton \\ \\ :\implies \sf Force \: = 0.30 \: Newton

Similar questions