Physics, asked by sayakpal329, 5 months ago

3. Two impedances are connected in parallel to the supply, the first takes a current of 40 A at a lagging phase angle of 30°, and the second a current of 30 A at a leading phase angle of 45°. Draw a phasor diagram to scale to represent the supply voltage and these currents. From this diagram, by construction, determine the total current taken from the supply and its phase angle.

Answers

Answered by Anonymous
0

Answer:Sinusoidal waveforms of the same frequency can have a Phase Difference between themselves which represents the angular difference of the two sinusoidal waveforms. Also the terms “lead” and “lag” as well as “in-phase” and “out-of-phase” are commonly used to indicate the relationship of one waveform to the other with the generalized sinusoidal expression given as: A(t) = Am sin(ωt ± Φ) representing the sinusoid in the time-domain form.

But when presented mathematically in this way it is sometimes difficult to visualise this angular or phasor difference between two or more sinusoidal waveforms. One way to overcome this problem is to represent the sinusoids graphically within the spacial or phasor-domain form by using Phasor Diagrams, and this is achieved by the rotating vector method.

Basically a rotating vector, simply called a “Phasor” is a scaled line whose length represents an AC quantity that has both magnitude (“peak amplitude”) and direction (“phase”) which is “frozen” at some point in time.

A phasor is a vector that has an arrow head at one end which signifies partly the maximum value of the vector quantity ( V or I ) and partly the end of the vector that rotates.

Generally, vectors are assumed to pivot at one end around a fixed zero point known as the “point of origin” while the arrowed end representing the quantity, freely rotates in an anti-clockwise direction at an angular velocity, ( ω ) of one full revolution for every cycle. This anti-clockwise rotation of the vector is considered to be a positive rotation. Likewise, a clockwise rotation is considered to be a negative rotation.

Although the both the terms vectors and phasors are used to describe a rotating line that itself has both magnitude and direction, the main difference between the two is that a vectors magnitude is the “peak value” of the sinusoid while a phasors magnitude is the “rms value” of the sinusoid. In both cases the phase angle and direction remains the same.

The phase of an alternating quantity at any instant in time can be represented by a phasor diagram, so phasor diagrams can be thought of as “functions of time”. A complete sine wave can be constructed by a single vector rotating at an angular velocity of ω = 2πƒ, where ƒ is the frequency of the waveform. Then a Phasor is a quantity that has both “Magnitude” and “Direction”.

Explanation:

Similar questions