Math, asked by alfishahussain9, 3 months ago

3/ under root 3 + 1 + 5/ under 3 -1 = a+b under root 3​

Answers

Answered by mathdude500
1

 \tt \: If \: \dfrac{3}{ \sqrt{3}  + 1}  + \dfrac{5}{ \sqrt{3} - 1 }  = a + b \sqrt{3}

\large\underline{\bold{Solution - }}

Concept Used :-

Rationalization is the process of eliminating a radical or imaginary number from the denominator or numerator of an algebraic fraction. That is, remove the radicals in a fraction so that the denominator or numerator only contains a rational number.

  • The denominator of the above fraction has a binomial radical i.e., is the sum of two terms, one of which is an irrational number.

  • Multiply the numerator and denominator of the fraction with the conjugate of the radical.

Let's solve the problem!!

Consider,

\rm :\longmapsto\:\dfrac{3}{ \sqrt{3}  +  1 }

On rationalizing the denominator, we get

\rm :\longmapsto\:\dfrac{3}{ \sqrt{3} + 1 }  \times \dfrac{ \sqrt{3} - 1 }{ \sqrt{3}  - 1}

\rm :\longmapsto\:\dfrac{3 \sqrt{3} - 3 }{ {( \sqrt{3}) }^{2}   -  {(1)}^{2} }

\rm :\longmapsto\:\dfrac{3 \sqrt{3} - 3 }{3 - 1}

\rm :\longmapsto\:\dfrac{3 \sqrt{3} - 3 }{2}

\rm :\implies\: \boxed{ \bf \: \dfrac{3}{ \sqrt{3}  + 1}  = \dfrac{3 \sqrt{3} - 3 }{2} }

Now,

Consider,

\rm :\longmapsto\:\dfrac{5}{ \sqrt{3} - 1 }

On rationalizing the denominator, we get

\rm :\longmapsto\:\dfrac{5}{ \sqrt{3}  - 1}  \times \dfrac{ \sqrt{3}  + 1}{ \sqrt{3}  + 1}

\rm :\longmapsto\:\dfrac{5 \sqrt{3}  + 5}{ {( \sqrt{3} )}^{2} -  {(1)}^{2}  }

\rm :\longmapsto\:\dfrac{5 \sqrt{3}  + 5}{3 - 1}

\rm :\longmapsto\:\dfrac{5 \sqrt{3} + 5 }{2}

Now,

\large \underline{\tt\:{ According  \: to  \: statement }}

\rm :\longmapsto\: \tt \:\: \dfrac{3}{ \sqrt{3}  + 1}  + \dfrac{5}{ \sqrt{3} - 1 }  = a + b \sqrt{3}

On substituting the values evaluated above, we get

\rm :\longmapsto\:\dfrac{3 \sqrt{3}  - 3}{2}  + \dfrac{5 \sqrt{3}  + 5}{2}  = a + b \sqrt{3}

\rm :\longmapsto\:\dfrac{3 \sqrt{3}  -  3  + 5 \sqrt{3}  + 5}{2}  = a + b \sqrt{ 3}

\rm :\longmapsto\:\dfrac{8\sqrt{3}  + 2}{2}  = a + b \sqrt{ 3}

\rm :\implies\:4 \sqrt{3}  + 1 = a + b \sqrt{3}

So,

On comparing we get,

\rm :\implies\: \boxed{ \bf \: a \:  =  \: 1 \:  \: and \:  \: b \:  =  \: 4}

Similar questions