Math, asked by krishnamohanp62, 9 months ago

( 3 + under root 7) + (3 - under root 7 )/ (3 - under root 7 )+( 3 + under root 7) = a + b under root 7

Answers

Answered by Vamprixussa
48

Given

\dfrac{(3+\sqrt{7}) +(3-\sqrt{7})}{(3-\sqrt{7})+(3+\sqrt{7}) } =a+b\sqrt{7}

Solving the LHS side, we get,

\implies \dfrac{3+\sqrt{7} +3-\sqrt{7}}{3-\sqrt{7}+3+\sqrt{7} }

\implies \dfrac{6}{6}

\implies 1

Now,

1=a+b\sqrt{7}

\implies 1+0\sqrt{7}=a+b\sqrt{7}

\implies a = 1

\implies b = 0

\boxed{\boxed{\bold{Therefore, \ the \ values \ of \ a \ and \ b \ are  \ 1 \ and \ 0 \ respectively}}}}}}}}

                                                                         


BrainlyConqueror0901: great work : )
Vamprixussa: Thankyouuu :)
Answered by AdorableMe
181

Correct question :-

\sf{If\ \dfrac{3 +  \sqrt{7} }{3 -  \sqrt{7} }  = a + b \sqrt{7},\ find\ a\ and\ b. }

Solution :-

\displaystyle{\sf{\longmapsto\frac{(3+\sqrt{7})(3+\sqrt{7})}{(3-\sqrt{7})(3+\sqrt{7})}  =a+b\sqrt{7} }}\\\\\\\sf{(By\ rationalisation)}\\\\\displaystyle{\sf{\longmapsto \frac{(3+\sqrt{7})^2}{(3)^2-(\sqrt{7})^2}=a+b\sqrt{7} }}\\\\\\\displaystyle{\sf{\longmapsto \frac{(3)^2+(\sqrt{7})^2+2\times3\times\sqrt{7}}{9-7}=a+b\sqrt{7} }}\\\\\\\displaystyle{\sf{\longmapsto \frac{9+7+6\sqrt{7}}{2}=a+b\sqrt{7} }}\\\\\\\displaystyle{\sf{\longmapsto \frac{16+6\sqrt{7}}{2}=a+b\sqrt{7} }}\\\\\\

\displaystyle{\sf{\longmapsto \frac{2(8+3\sqrt{7})}{2}=a+b\sqrt{7} }}\\\\\\\displaystyle{\sf{\longmapsto 8+3\sqrt{7}=a+b\sqrt{7} }}

Comparing both the sides, we get :-

a = 8

b = 3


BrainlyConqueror0901: well explained answer keep it up : )
Similar questions