Math, asked by shehnaj98986, 11 months ago

3+underoot7 over 3-4 underoot7 =a+bunderoot7​

Answers

Answered by Anonymous
19

Question :-

 \dfrac{3+\sqrt{7}}{3-4\sqrt{7}} = a + \sqrt{b}

◾Solution :-

As we are able to see the denominator is irrational , So we will first rationalize the denominator.

Rationalizing :-

  = \dfrac{3+\sqrt{7}}{3-4\sqrt{7}}  \times \dfrac{3+4\sqrt{7}}{3+4\sqrt{7}}

 = \dfrac{(3+\sqrt{7})(3+4\sqrt{7})}{(3)^2-(4\sqrt{7})^2}

 = \dfrac{ 9 + 12\sqrt{7} + 3\sqrt{7} + 28 }{9 - 112}

 = \dfrac{ 37 + 15\sqrt{7}}{-103}

 = \dfrac{-37 - 15\sqrt{7}}{103}

So the values of

 \bold{ a = \dfrac{-37}{103} }

 \bold{b = \dfrac{-15}{103}}

Answered by pratyush4211
18

 \frac{3 +  \sqrt{7} }{3 - 4 \sqrt{7} }  = a + b \sqrt{7}

Rationalising Factor of 3-47=3+47

Multiply Both Numerator and Denominator with 3+47

 \frac{(3 +  \sqrt{7}) (3 + 4 \sqrt{7}) }{(3 - 4 \sqrt{7})(3 + 4 \sqrt{7})  }  = a + b \sqrt{7}  \\  \\  \frac{3(3 + 4 \sqrt{7} ) +  \sqrt{7}(3 + 4 \sqrt{7}  )}{ {3}^{2}  -( 4 \sqrt{7)} {}^{2}  }  \\  \\  \frac{9 + 12 \sqrt{7} + 3 \sqrt{7}   + 4 \times 7}{9 - 16 \times 7}  \\  \\  \frac{9 + 12 \sqrt{7} + 3 \sqrt{7} + 28  }{9 - 112}  \\  \\  \frac{37 + 15 \sqrt{7} }{ - 103}  \\  \\  \frac{ - (37 + 15 \sqrt{7} )}{103}  \\  \\  \frac{ - 37 - 15 \sqrt{7} }{103}  = a + b \sqrt{7}  \\  \\  -  \frac{  37}{103}   -  \frac{15}{103}  \times  \sqrt{7}

Comparing Both Sides we get

a=-37/103

b=-15/103

Similar questions