Math, asked by bablisingh659, 1 month ago

3. Verify the following:

( \frac{ 3}{8}  +  \frac{ { - 2}^{} }{3}) +  \frac{ - 7}{12 =}   =  \frac{3}{8}  + ( \frac{ - 2}{3}  +  \frac{ - 7}{12}

Answers

Answered by TwilightShine
5

Answer :-

We have to show that :-

 \sf \left( \dfrac{ 3}{8} + \dfrac{ - 2}{ \:  \:  \: 3} \right) + \dfrac{ - 7}{ \: 12 } = \dfrac{3}{8} +  \left( \dfrac{ - 2}{ \:  \:  \: 3} + \dfrac{ - 7}{ \: 12} \right)

 \\

LHS

 \longmapsto\tt  \left(\dfrac{3}{8}  +  \dfrac{ - 2}{ \:  \:  \: 3} \right)  +  \dfrac{ - 7}{12}

 \longmapsto\tt  \left(\dfrac{(3 \times 3) +  (- 2 \times 8)}{24} \right)  +  \dfrac{ - 7}{12}

 \longmapsto \tt\dfrac{9 - 16}{24}  +  \dfrac{ - 7}{12}

 \longmapsto\tt \dfrac{ - 7}{24}  +  \dfrac{ - 7}{12}

\longmapsto \tt \dfrac{( - 7 \times 1) + ( - 7 \times 2)}{24}

 \longmapsto\tt \dfrac{ - 7 - 14}{24}

 \longmapsto \tt\dfrac{ - 21}{ \:  \:  \: 24}

\longmapsto \tt \dfrac{ - 7}{ \:  \:  \: 8}

RHS

 \longmapsto\tt \dfrac{3}{8}  +  \left( \dfrac{ - 2}{ \:  \:  \: 3}   +  \dfrac{ - 7}{12}  \right)

  \longmapsto\tt\dfrac{3}{8}  +  \left( \dfrac{( - 2 \times4) + ( - 7 \times 1)}{12}  \right)

 \longmapsto\tt \dfrac{3}{8} +  \dfrac{ - 8 - 7}{12}

  \longmapsto\tt\dfrac{3}{8}  +  \dfrac{ - 15}{ \:  \:  \: 12}

 \longmapsto\tt \dfrac{(3 \times 3) + ( - 15 \times 2)}{24}

 \longmapsto\tt \dfrac{9 - 30}{24}

  \longmapsto\tt\dfrac{ - 21}{ \:  \:  24}

  \longmapsto\tt\dfrac{ - 7}{ \:  \: 8}

 \\

LHS = RHS.

Hence verified!

Similar questions