3) What should be the angle of projection for the horizontal range of a projectile to be maximum?
(a) 90 0 (b) 1800 (c) 450 (d) 00
Answers
Let Velocity is V and the angle of projection with horizontal is θ.
∴Range, R=g2V2sinθcosθ=gV2sin2θ
⇒dθdR=gV22cos2θ=0 ⇒2θ=90o ⇒θ=45o
⇒dθ2d2R=−gV24sin2θ, at θ=45o $$\Rightarrow \dfrac{d^2R}{d\theta^2}=-\dfrac{4V^2}{g}<0$$
Hence, at θ=45o , Range is maximum.
Correct Question:
What should be the angle of projection for the horizontal range of a projectile to be maximum?
(a) 90° (b) 180° (c) 45° (d) 0°
Answer:
The angle of projection (θ) for which the angle of projection to have a maximum range will be 45 °
Given:
- Range formula is 2 u² sinθ cos θ / g
Explanation:
From the formula we know,
⇒ R = 2 u² sinθ cosθ / g
Here,
- R is range
- u is Initial velocity.
- θ is Angle of projection.
- g denotes acceleration due to gravity.
Now,
⇒ R = 2 u² sinθ cosθ / g
⇒ R = u² × ( 2 sinθ cosθ ) / g
⇒ R = u² × sin 2θ / g ∵ [ 2 sinθ cosθ = sin 2θ ]
⇒ R = u² sin 2θ / g
Here, u and g are constant.
Therefore,
For having maximum the range the angle should be more.
Now,
We know that maximum value of sin angle is 1.
Therefore,
⇒ sin 2θ = 1
⇒ sin 2θ = sin 90 ∵ [ sin 90 = 1 ]
⇒ 2 θ = 90 °
⇒ θ = 90 ° / 2
⇒ θ = 45 °
⇒ θ = 45 °
∴ The angle of projection (θ) for which the angle of projection to have a maximum range will be 45 °.