Math, asked by pewshama, 10 months ago

(√3)^(x+1)+1=(3√3)^(2x-1)​

Answers

Answered by BrainlyPopularman
19

GIVEN :

  \\  \sf \:  {( \sqrt{3} )}^{(x + 1)+1}  =  {(3 \sqrt{3}) }^{2x - 1}  \\

TO FIND :

• Value of 'x' = ?

SOLUTION :

  \\  \sf \implies  {( \sqrt{3} )}^{(x + 1)+1}  =  {(3 \sqrt{3}) }^{2x - 1}  \\

  \\  \sf \implies {( \sqrt{3} )}^{(x + 2)}  =  {(3 \sqrt{3}) }^{2x - 1}  \\

• We should write this as –

  \\  \sf \implies {( \sqrt{3} )}^{(x + 2)}  =  {( \sqrt{3} .\sqrt{ 3} .  \sqrt{3}) }^{2x - 1}  \\

  \\  \sf \implies {( \sqrt{3} )}^{(x + 2)}  =  {( \sqrt{3}) }^{3(2x - 1)}  \\

• Now compare both side –

  \\  \sf \implies x + 2  = 3 (2x - 1)\\

  \\  \sf \implies x + 2  = 6x -3\\

  \\  \sf \implies x  - 6x  =  - 2 -3\\

  \\  \sf \implies  - 5x  =  -5 \\

  \\  \sf \implies  x  =   \cancel \dfrac{( - 5)}{( - 5)} \\

  \\ \implies \large{ \boxed{ \sf x  = 1}} \\

USED IDENTITY :

  \\(1) \:  \:  \sf \:  \:  {a}^{b}  =  {a}^{c} \:  \:  then \:  \: { \boxed{ \sf b = c}} \\

Similar questions