Math, asked by mercygamer77, 1 month ago

3 /x-1 + 1/x+1 = 4/x​

Answers

Answered by Anonymous
41

\sf\blue{Solution:-}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\sf{ \frac{3}{x - 1  }+  \frac{1}{x + 1 }   = } \sf \blue{ \frac{4}{x}  }

\sf{ \frac{3(x + 1)  \: +  \: 1(x - 1)}{(x - 1)(x + 1)} = } \sf \blue {\frac{4}{x}  }

\sf{ \frac{3x \:  + \:  3 \: +  \: x - 1}{ {x}^{2} - 1 } =} \sf \blue{ \frac{4}{x}  }

\sf{ \frac{4x  \:  +  \: 2}{ {x}^{2} - 1 }  =  }\sf \blue{\frac{4}{x}}

\sf{x(4x + 2) = \:  }\sf \blue{4( {x}^{2}  - 1) }

\sf{ {4x}^{2}  + 2x = \: } \sf \blue{4{x}^{2}  -4 }

\sf{  \cancel{4x}^{2}  + 2x = }\sf \blue{ \cancel4{x}^{2}  -4 }

\sf{ 2x = \:  }\sf \blue{ -4 }

\sf{ x = } \sf \blue{ \frac{  -  \cancel4}{ \cancel2} }

\sf \blue{x =  - 2}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\sf\blue{Steps \:  follow \:  to  \: solve \:  this \:  ques :-}\downarrow

\sf{1) \: Same \:  denominator \:  of \:  both \:  fractions \: }

\sf{2) Then \:  add  \: them  \: together}

\sf{3) In \:  Fourth  \: step  \: do  \: cross \:  multiplication}

\sf{ 4)Then  \: just \:  simply  \: solve \:  both \:  equation}

\sf{5) By  \: shifting  \: them \:  to \:  other \:  side \:  if \:  needed}

\sf \blue{6) Then \:  the  \: value \:  of \:  x  \: comes  \: which  \: is  \: -2}

Similar questions