Math, asked by shivasati38, 1 year ago

3(x-2)/5≤5(2-x)/3 x ka Man gyat kijiye​

Answers

Answered by Anonymous
13

 &lt;img </p><p>Src ="http://majatisel.com/hello.gif"width =" 300"height ="315" &gt;

 \huge \mathcal {\pink {S0lUtion}}

 &lt;b &gt;&lt;font color ="red" &gt;

  =  &gt; \frac{3(x - 2)}{5}  \leqslant  \frac{5(2 - x)}{3}  \\  \\   =  &gt; \frac{3x - 6}{5}  \leqslant  \frac{10 - 5x}{3}  \\  \\  =  &gt; 9x - 18 \leqslant 50 - 25x  \:  \:  \:  \:  \:  \: .....(ii)\\  \\  =  &gt; 9x + 25x = 50 \times 18 \\  \\  =  &gt; 34x = 68 \\  \\  =  &gt; x =  \frac{68}{34}  \\  \\  =  &gt; x = 2 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   ............(ii)\\  \\  subtituting \: (ii) \: in \: (i).. \\ we \: have \:  \\  \\ 18 - 18 = 50  -  50 \\  \\ 0 = 0 \\  \\ hence.. \: they \: are \: equal

 &lt;/b &gt;&lt;/font &gt;

 \huge \mathcal {\pink {hope \:it \:helps}}

Answered by BrainlyPopularman
9

{ \bold{ \underline{Given} :  - }} \\  \\  =  &gt;  \frac{3(x - 2)}{5}  \leqslant  \frac{5(2 - x)}{ 3 }  \\  \\ { \bold{ \underline{To \:  \:  find} : -  }} \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: Value \:  \:  of  \:  \: 'x' \\  \\ { \bold{ \underline{ Solution} : -  }} \\  \\  =  &gt;  \frac{3(x - 2)}{5}  \leqslant  \frac{5(2 - x)}{3}  \\  \\  =  &gt; 9(x - 2) \leqslant 25(2 - x) \\  \\  =  &gt; 9x - 18 \leqslant 50 - 25x \\  \\  =  &gt; 25x + 9x \leqslant 50 + 18 \\  \\  =  &gt; 34x \leqslant 68 \\  \\  =  &gt; x \leqslant 2 \\  \\  \:  \: { \bold{So \:  \:  that  - }} \\  \\  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \: { \bold{ \boxed{x \in ( -  \infty \: ,\:  2 ] }}}  \\  \\ { \bold{ \underline{ Properties  \:  \: of  \:  \:  inequalities } :  - }} \\  \\ (1) \:  \: Addition  \:  \: Property \:  \:  of \:  \:  Inequality. \\  \\ (2) \:  \: Subtraction \:  \:  Property \:  \:  of \:  \:  Inequality .\\  \\ (3) \:  \: Multiplication  \:  \: Property  \:  \: of \:  \:  Inequality .\\  \\ (4) \:  \: Division  \:  \: Property \:  \:  of \:  \:  Inequality. \\  \\ { \bold{ \underline{Note} :  - }} \\   \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  Multiplication  \:  \: Property  \:  \: of \:  \:  Inequality  \:  \: can \:  \: use  \\ for \:  \: known \:  \: variable.

Similar questions