3^x + 3^x + 3^x =162 pls find ?
Answers
Answered by
0
Explanation:
We have:
3^x+3^x3
x
+3
x
= 162
We have to find, the value of x is:
Solution:
∴ 3^x+3^x3
x
+3
x
= 162
Taking 3^x3
x
as common in L.H.S., we get
⇒ 3^x3
x
(1 + 1) = 162
⇒ 3^x3
x
(2) = 162
⇒ 3^x3
x
= \dfrac{162}{2}
2
162
⇒ 3^x3
x
= 81 [ ∵ 81 = 3 × 3 × 3 × 3]
⇒ 3^x3
x
= 3^43
4
⇒ x = 4
Thus, the value of "x is equal to 4".
Similar questions